close
close

The anxiogenic drug yohimbine is a reinforcer in male and female rats

  • Morales A. Yohimbine in erectile dysfunction: the facts. Int J Impot Res. 2000;12:70–4.

    Article 

    Google Scholar 

  • Wang CM, Wu BR, Xiang P, Xiao J, Hu XC. Management of male erectile dysfunction: from the past to the future. Front Endocrinol (Lausanne). 2023;14:1–6.

    Google Scholar 

  • Cohen PA, Wang YH, Maller G, Desouza R, Khan IA. Pharmaceutical quantities of yohimbine found in dietary supplements in the USA Drug Test Anal. 2016;8:357–69.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu L, Han X, Zhu J, Du L, Liu L, Gong W. Severe acute intoxication with yohimbine: four simultaneous poisoning cases. Forensic Sci Int. 2021;320:110705.

  • Anderson C, Anderson D, Harre N, Wade N. Case study: Two fatal case reports of acute yohimbine intoxication. J Anal Toxicol. 2013;37:611–4.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Drevin G, Palayer M, Compagnon P, Zabet D, Jousset N, Briet M, et al. A fatal case report of acute yohimbine intoxication. Forensic Toxicol. 2020;38:287–91.

  • Figlewicz DP, Hill SR, Jay JL, West CH, Zavosh AS, Sipols AJ. Effect of recurrent yohimbine on immediate and post-hoc behaviors, stress hormones, and energy homeostatic parameters. Physiol Behav. 2014;129:186–93.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Linden CH, Vellman WP, Rumack B. Yohimbine: a new street drug. Ann Emerg Med. 1985;14:1002–4.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Swann AC, Birnbaum D, Jagar AA, Dougherty DM, Moeller FG. Acute yohimbine increases laboratory-measured impulsivity in normal subjects. 2005. https://doi.org/10.1016/j.biopsych.2005.02.007.

  • Johnston AL, Baldwin HA, File SE. Measures of anxiety and stress in the rat following chronic treatment with yohimbine. J Psychopharmacol. 1988;2:33–8.

  • Charney DS, Heninger GR, Redmond DE. Yohimbine induced anxiety and increased noradrenergic function in humans: Effects of diazepam and clonidine. Life Sci. 1983;33:19–29.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walker LC, Kastman HE, Lawrence AJ. Pattern of neural activation following yohimbine-induced reinstatement of alcohol seeking in rats. Eur J Neurosci. 2020;51:706–20.

    Article 
    PubMed 

    Google Scholar 

  • Sun HS, Green TA, Theobald DEH, Birnbaum SG, Graham DL, Zeeb FD, et al. Yohimbine increases impulsivity through activation of cAMP response element binding in the orbitofrontal cortex. Biol Psychiatry. 2010;67:649–56.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahoney MK, Barnes JH, Wiercigroch D, Olmstead MC. Pharmacological investigations of a yohimbine-impulsivity interaction in rats. Behav Pharm. 2016;27:585–95.

    Article 
    CAS 

    Google Scholar 

  • Mantsch JR, Baker DA, Funk D, Lê AD, Shaham Y. Stress-induced reinstatement of drug seeking: 20 years of progress. Neuropsychopharmacology. 2016;41:335–56.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sinha R, Shaham Y, Heilig M. Translational and reverse translational research on the role of stress in drug craving and relapse. Psychopharmacol (Berl). 2011;218:69–82.

    Article 
    CAS 

    Google Scholar 

  • Greenwald MK, Lundahl LH, Steinmiller CL. Yohimbine increases opioid-seeking behavior in heroin-dependent, buprenorphine-maintained individuals. Psychopharmacol (Berl). 2013;225:811–24.

    Article 
    CAS 

    Google Scholar 

  • Stine SM, Southwick SM, Petrakis IL, Kosten TR, Charney DS, Krystal JH. Yohimbine-induced withdrawal and anxiety symptoms in opioid-dependent patients. Biol Psychiatry. 2002;51:642–51.

  • Umhau JC, Schwandt ML, Usala J, Geyer C, Singley E, George DT, et al. Pharmacologically induced alcohol craving in treatment seeking alcoholics correlates with alcoholism severity, but is insensitive to acamprosate. Neuropsychopharmacology. 2011;36:1178–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maria MMMS, McRae-Clark A, Baker NL, Ramakrishnan V, Brady KT. Yohimbine administration and cue-reactivity in cocaine-dependent individuals. Psychopharmacol (Berl). 2014;231:4157–65.

    Article 

    Google Scholar 

  • Ball KT, Jarsocrak H, Hyacinthe J, Lambert J, Lockowitz J, Schrock J. Yohimbine reinstates extinguished 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) seeking in rats with prior exposure to chronic yohimbine. Behav Brain Res. 2015;294:1–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bertholomey ML, Nagarajan V, Torregrossa MM. Sex differences in reinstatement of alcohol seeking in response to cues and yohimbine in rats with and without a history of adolescent corticosterone exposure. Psychopharmacol (Berl). 2016;233:2277–87.

    Article 
    CAS 

    Google Scholar 

  • Feltenstein MW, Henderson AR, See RE. Enhancement of cue-induced reinstatement of cocaine-seeking in rats by yohimbine: Sex differences and the role of the estrous cycle. Psychopharmacol (Berl). 2011;216:53–62.

    Article 
    CAS 

    Google Scholar 

  • Feltenstein MW, Ghee SM, See RE. Nicotine self-administration and reinstatement of nicotine-seeking in male and female rats. Drug Alcohol Depend. 2012;121:240–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lê S, Harding W, Juzytsch D, Funk Y, Shaham AD. ORIGINAL INVESTIGATION Role of alpha-2 adrenoceptors in stress-induced reinstatement of alcohol seeking and alcohol self-administration in rats. Psychopharmacol (Berl). 2005;179:366–73.

    Article 

    Google Scholar 

  • Liu J, Johnson B, Wu R, Seaman R, Vu J, Zhu Q, et al. TAAR1 agonists attenuate extended-access cocaine self-administration and yohimbine-induced reinstatement of cocaine-seeking. Br J Pharm. 2020;177:3403–14.

    Article 
    CAS 

    Google Scholar 

  • Shepard JD, Bossert JM, Liu SY, Shaham Y. The anxiogenic drug yohimbine reinstates methamphetamine seeking in a rat model of drug relapse. Biol Psychiatry. 2004;55:1082–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou Y, Leri F, Grella SL, Aldrich JV, Kreek MJ. Involvement of dynorphin and kappa opioid receptor in yohimbine-induced reinstatement of heroin seeking in rats. Synapse. 2013;67:358–61.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nair SG, Gray SM, Ghitza UE. Role of food type in yohimbine- and pellet-priming-induced reinstatement of food seeking. Physiol Behav. 2006;88:559–66.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghitza UE, Gray SM, Epstein DH, Rice KC, Shaham Y. The anxiogenic drug yohimbine reinstates palatable food seeking in a rat relapse model: A role of CRF1 receptors. Neuropsychopharmacology. 2006;31:2188–96.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Armstrong A, Rosenthal H, Stout N, Richard JM. Reinstatement of Pavlovian responses to alcohol cues by stress. Psychopharmacol (Berl). 2023;240:531–45.

    Article 
    CAS 

    Google Scholar 

  • Tabbara RI, Rahbarnia A, Lê AD, Fletcher PJ. The pharmacological stressor yohimbine, but not U50,488, increases responding for conditioned reinforcers paired with ethanol or sucrose. Psychopharmacol (Berl). 2020;237:3689–702.

    Article 
    CAS 

    Google Scholar 

  • Chen YW, Fiscella KA, Bacharach SZ, Tanda G, Shaham Y, Calu DJ. Effect of yohimbine on reinstatement of operant responding in rats is dependent on cue contingency but not food reward history. Addict Biol. 2015;20:690.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mahler SV, Moorman DE, Feltenstein MW, Cox BM, Ogburn KB, Bachar M, et al. A rodent “self-report” measure of methamphetamine craving? Rat ultrasonic vocalizations during methamphetamine self-administration, extinction, and reinstatement. Behav Brain Res. 2013;236:78–89.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Vry J, Benz U, Schreiber R, Traber J. Shock-induced ultrasonic vocalization in young adult rats: a model for testing putative anti-anxiety drugs. Eur J Pharm. 1993;249:331.

    Article 

    Google Scholar 

  • Molewijk -A M, van der Poel HE, Mos AM, van der Heyden JJ, Olivier B, Molewijk HE, et al. Conditioned ultrasonic distress vocalizations in adult male rats as a behavioural paradigm for screening anti-panic drugs. Psychopharmacol (Berl). 1995;117:40.

    Article 

    Google Scholar 

  • File SE. Aversive and appetitive properties of anxiogenic and anxiolytic agents. Behav Brain Res. 1986;21:189–94.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morales L, Perez-Garcia C, Alguacil LF. Effects of yohimbine on the antinociceptive and place conditioning effects of opioid agonists in rodents. Br J Pharm. 2001;133:172.

    Article 
    CAS 

    Google Scholar 

  • O’Connor EC, Chapman K, Butler P, Mead AN. The predictive validity of the rat self-administration model for abuse liability. Neurosci Biobehav Rev. 2011;35:912–38.

    Article 
    PubMed 

    Google Scholar 

  • White NM, Milner PM. The psychobiology of reinforcers. Annu Rev Psychol. 1992;43:443–71.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Southwick SM, Davis M, Horner B, Cahill L, Morgan CA, Gold PE, et al. Relationship of enhanced norepinephrine activity during memory consolidation to enhanced long-term memory in humans. Am J Psychiatry. 2002;159:1420–2.

    Article 
    PubMed 

    Google Scholar 

  • Sperl MFJ, Panitz C, Skoluda N, Nater UM, Pizzagalli DA, Hermann C, et al. Alpha-2 adrenoreceptor antagonist yohimbine potentiates consolidation of conditioned fear. Int J Neuropsychopharmacol. 2022;25:759–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wingenfeld K, Kuffel A, Uhlmann C, Terfehr K, Schreiner J, Kuehl LK, et al. Effects of noradrenergic stimulation on memory in patients with major depressive disorder. Stress. 2013;16:191–201.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Powers MB, Smits JAJ, Otto MW, Sanders C, Emmelkamp PMG. Facilitation of fear extinction in phobic participants with a novel cognitive enhancer: A randomized placebo controlled trial of yohimbine augmentation. J Anxiety Disord. 2009;23:350–6.

    Article 
    PubMed 

    Google Scholar 

  • Roozendaal B, Mirone G. Opposite effects of noradrenergic and glucocorticoid activation on accuracy of an episodic-like memory. 2020. https://doi.org/10.1016/j.psyneuen.2020.104588.

  • Gazarini L, Stern CA, Carobrez AP, Bertoglio LJ. Enhanced noradrenergic activity potentiates fear memory consolidation and reconsolidation by differentially recruiting α1-and β-adrenergic receptors. Learn Mem. 2013;20:210–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roozendaal B, Okuda S, Van Der Zee EA, McGaugh JL. Glucocorticoid enhancement of memory requires arousal-induced noradrenergic activation in the basolateral amygdala. Proc Natl Acad Sci USA 2006;103:6741–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolter M, Huff E, Speigel T, Winters BD, Leri F. Cocaine, nicotine, and their conditioned contexts enhance consolidation of object memory in rats. Learn Mem. 2019;26:46–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolter M, Lapointe T, Baidoo N, Mitchnick KA, Wideman C, Winters BD, et al. Double dissociation of perirhinal nicotinic acetylcholine receptors and dopamine D2 receptors in modulation of object memory consolidation by nicotine, cocaine and their conditioned stimuli . Eur Neuropsychopharmacol. 2023;72:50–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wolter M, Lapointe T, Melanson B, Baidoo N, Francis T, Winters BD, et al. Memory enhancing effects of nicotine, cocaine, and their conditioned stimuli; effects of beta-adrenergic and dopamine D2 receptor antagonists. Psychopharmacol (Berl). 2021;238:2617–28.

    Article 
    CAS 

    Google Scholar 

  • Sticht M, Mitsubata J, Tucci M, Leri F. Reacquisition of heroin and cocaine place preference involves a memory consolidation process sensitive to systemic and intra-ventral tegmental area naloxone. Neurobiol Learn Mem. 2009;93:248–60.

    Article 
    PubMed 

    Google Scholar 

  • Cummins Jacklin E, Boughner E, Kent K, Kwiatkowski D, MacDonald T, Leri F. Memory of a drug lapse: role of noradrenaline. 2015. https://doi.org/10.1016/j.neuropharm.2015.07.020.

  • Thériault RK, Leri F, Kalisch B. The role of neuronal nitric oxide synthase in cocaine place preference and mu opioid receptor expression in the nucleus accumbens. Psychopharmacol (Berl). 2018;235:2675–85.

    Article 

    Google Scholar 

  • Li S, Zou S, Coen K, Funk D, Shram MJ, Lê AD. Sex differences in yohimbine-induced increases in the reinforcing efficacy of nicotine in adolescent rats. Addict Biol. 2014;19:156–64.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Renda B, Andrade AK, Wylie IR, Stone AP, Antenos M, Leri F, et al. Adolescent restraint stress enhances adult nicotine reinforcement in male and female rats. Psychoneuroendocrinology. 2024;161:306–4530.

    Article 

    Google Scholar 

  • Francis T, Wolter M, Leri F. The effects of passive and active administration of heroin, and associated conditioned stimuli, on consolidation of object memory. Sci Rep. 2022;12:20351.

  • Winters BD, Forwood SE, Cowell RA, Saksida LM, Bussey TJ. Behavioral/systems/cognitive double dissociation between the effects of peri-postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: heterogeneity of function within the temporal lobe. 2004. https://doi.org/10.1523/JNEUROSCI.1346-04.2004.

  • Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process. 2012;13:93–110.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wolter M, Huff AE, Baidoo N, Jardine KH, Pulles Z, Winters BD, et al. Modulation of object memory consolidation by heroin and heroin-conditioned stimuli: role of opioid and noradrenergic systems. Eur Neuropsychopharmacol. 2020;33:146–57.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Penning DH, Jhamandas K. Yohimbine-precipitated clonidine withdrawal: An experimental model of the antihypertensixe drug withdrawal syndrome. Can J Physiol Pharm. 1992;16:817–22.

    Google Scholar 

  • Hubbard JW, Pfister SL, Biediger AM, Herzig TC, Keeton TK. The pharmacokinetic properties of yohimbine in the conscious rat. Naunyn Schmiedebergs Arch Pharm. 1988;337:583–7.

    Article 
    CAS 

    Google Scholar 

  • Kimura T, Suzuki S, Satoh S. Differential blocking effects of prazosin and yohimbine on pressor responses to neuronally released and exogenously administered noradrenaline in the pithed rat. Clin Exp Pharm Physiol. 1984;11:589–95.

    Article 
    CAS 

    Google Scholar 

  • Kuo YJJ, Keeton TK. Is the sympathoexcitatory effect of yohimbine determined by brain yohimbine concentration? Naunyn Schmiedebergs Arch Pharm. 1991;344:308–13.

    Article 
    CAS 

    Google Scholar 

  • Tsou MY, Lui PW, Lee TY, Pan JT, Chan SHH. Differential effects of prazosin and yohimbine on fentanyl-induced muscular rigidity in rats. Neuropharmacology. 1989;28:1163–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nirogi R, Abraham R, Jayarajan P, Medapati RB, Shanmuganathan D, Kandikere V, et al. Difference in the norepinephrine levels of experimental and non-experimental rats with age in the object recognition task. 2012. https://doi.org/10.1016/j.brainres.2012.03.013.

  • Redfern WS, Williams A. A re‐evaluation of the role of α2‐adrenoceptors in the anxiogenic effects of yohimbine, using the selective antagonist delequamine in the rat. Br J Pharm. 1995;116:2081–9.

    Article 
    CAS 

    Google Scholar 

  • Baidoo N, Wolter M, Holahan MR, Teale T, Winters B, Leri F. The effects of morphine withdrawal and conditioned withdrawal on memory consolidation and c-Fos expression in the central amygdala. Addict Biol. 2021;26:e12909.

  • Botly LCP, Burton CL, Rizos Z, Fletcher PJ. Characterization of methylphenidate self-administration and reinstatement in the rat. Psychopharmacol (Berl). 2008;199:55–66.

    Article 
    CAS 

    Google Scholar 

  • Wilson MC, Hitomi M, Schuster CR. Psychomotor stimulant self administration as a function of dosage per injection in the Rhesus monkey. Psychopharmacologia. 1971;22:271–81.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leri F. Opiate Self-Administration. Anim Model Drug Addict 2011;53:83–100.

    Article 
    CAS 

    Google Scholar 

  • Panlilio LV. Stimulant self-administration. Neuromethods, vol. 53, Humana Press; 2011. p. 57–81.

  • Zimmer BA, Dobrin CV, Roberts DCS. Examination of behavioral strategies regulating cocaine intake in rats. Psychopharmacol (Berl). 2013;225:935–44.

    Article 
    CAS 

    Google Scholar 

  • Morgan D, Liu Y, Oleson EB, Roberts DCS. Cocaine self-administration on a hold-down schedule of reinforcement in rats. Psychopharmacol (Berl). 2009;201:601–9.

    Article 
    CAS 

    Google Scholar 

  • Richardson NR, Roberts DCS. Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J Neurosci Methods. 1996;66:1–11.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arnold JM, Roberts DCS. A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharm Biochem Behav. 1997;57:441–7.

    Article 
    CAS 

    Google Scholar 

  • Leri F, Stewart J. Drug-induced reinstatement to heroin and cocaine seeking: a rodent model of relapse in polydrug use. Exp Clin Psychopharmacol. 2001;9:297–306.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roth ME, Carroll ME. Sex differences in the acquisition of IV methamphetamine self-administration and subsequent maintenance under a progressive ratio schedule in rats. Psychopharmacol (Berl). 2004;172:443–9.

    Article 
    CAS 

    Google Scholar 

  • Lynch WJ, Carroll ME. Sex differences in the acquisition of intravenously self-administered cocaine and heroin in rats. Psychopharmacol (Berl). 1999;144:77–82.

    Article 
    CAS 

    Google Scholar 

  • Baldi E, Bucherelli C. The inverted “U-Shaped” dose-effect relationships in learning and memory: modulation of arousal and consolidation. Nonlinearity Biol Toxicol Med. 2005;3:nonlin.003.01.0.

    Article 

    Google Scholar 

  • Song Q, Bolsius YG, Ronzoni G, Henckens MJAG, Roozendaal B. Noradrenergic enhancement of object recognition and object location memory in mice. Stress. 2021;24:181–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roozendaal B, Castello NA, Vedana G, Barsegyan A, McGaugh JL. Noradrenergic activation of the basolateral amygdala modulates consolidation of object recognition memory. Neurobiol Learn Mem. 2008;90:576–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kelleher RT, Gollub LR. A review of positive conditioned reinforcement 1. J Exp Anal Behav. 1962;5:543–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bishnoi IR, Ossenkopp KP, Kavaliers M. Sex and age differences in locomotor and anxiety-like behaviors in rats: From adolescence to adulthood. Dev Psychobiol. 2021;63:496–511.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kokras N, Dalla C, Sideris AC, Dendi A, Mikail HG, Antoniou K, et al. Behavioral sexual dimorphism in models of anxiety and depression due to changes in HPA axis activity. Neuropharmacology. 2012;62:436–45.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu Y, He AB, Liou M, Ou C, Kozłowska A, Chen P, et al. The paradoxical effect hypothesis of abused drugs in a rat model of chronic morphine administration. J Clin Med. 2021;10:10.

    Article 

    Google Scholar 

  • Wang YC, Huang ACW, Hsiao S. Paradoxical simultaneous occurrence of amphetamine-induced conditioned taste aversion and conditioned place preference with the same single drug injection: A new ‘pre- and post-association’ experimental paradigm. Pharm Biochem Behav. 2010;95:80–7.

    Article 
    CAS 

    Google Scholar 

  • Mayer LA, Parker LA. Rewarding and aversive properties of IP and SC cocaine: assessment by place and taste conditioning. Psychopharmacol (Berl). 1993;112:189–94.

    Article 
    CAS 

    Google Scholar 

  • Bo-Han He A, Chang Y-C, Wan Yun Meng A, Chih Wei Huang A, Huang A. Re-evaluation of the reward comparison hypothesis for alcohol abuse . 2017. https://doi.org/10.1016/j.bbr.2017.06.006.

  • Brockwell NT, Eikelboom R, Beninger RJ. Caffeine-induced place and taste conditioning: production of dose-dependent preference and aversion. Pharm Biochem Behav. 1991;38:513–7.

    Article 
    CAS 

    Google Scholar 

  • Dannenhoffer CA, Spear LP. Age differences in conditioned place preferences and taste aversions to nicotine. Dev Psychobiol. 2016;58:660–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ettenberg A, Geist TD. Animal model for investigating the anxiogenic effects of self-administered cocaine. Psychopharmacol (Berl). 1991;103:455–61.

    Article 
    CAS 

    Google Scholar 

  • Wise RA, Yokel RA, De WitH. Both positive reinforcement and conditioned aversion from amphetamine and from apomorphine in rats. N Ser. 1976;191:1273–5.

    CAS 

    Google Scholar 

  • Hedner T, Edgar B, Edvinsson L, Hedner J, Persson B, Pettersson A. Yohimbine pharmacokinetics and interaction with the sympathetic nervous system in normal volunteers. Eur J Clin Pharm. 1992;43:651–6.

    Article 
    CAS 

    Google Scholar 

  • Goldberg MR, Robertson D. Yohimbine: A pharmacological probe for study of the α2-adrenoreceptor. Pharm Rev. 1983;35:143–80.

    CAS 
    PubMed 

    Google Scholar 

  • Nahimi A, Jakobsen S, Munk OL, Vang K, Phan JA, Rodell A, et al. Mapping a 2 adrenoceptors of the human brain with 11 C-Yohimbine. J Nucl Med. 2015;56:392–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Phan JA, Landau AM, Wong DF, Jakobsen S, Nahimi A, Doudet DJ, et al. Quantification of 11 cyohimbine binding to α 2 adrenoceptors in rat brain in vivo. J Perinatol. 2015;35:501–11.

    CAS 

    Google Scholar 

  • Andén NE, Pauksens K, Svensson K. Selective blockade of brain α2-autoreceptors by yohimbine: effects on motor activity and on turnover of noradrenaline and dopamine. J Neural Transm. 1982;55:111–20.

    Article 
    PubMed 

    Google Scholar 

  • Andén NE, Grabowska M. Pharmacological evidence for a stimulation of dopamine neurons by noradrenaline neurons in the brain. Eur J Pharm. 1976;39:275–82.

    Article 

    Google Scholar 

  • Brannan T, Martinez-Tica J, Yahr MD. Effect of yohimbine on brain monoamines: an in vivo study. J Neural Transm – Park Dis Dement Sect. 1991;3:81–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tanda G, Bassareo V, Di Chiara G. Mianserin markedly and selectively increases extracellular dopamine in the prefrontal cortex as compared to the nucleus accumbens of the rat. Psychopharmacol (Berl). 1996;123:127–30.

    Article 
    CAS 

    Google Scholar 

  • Visocky V, Ma CJT, Lowrie MH, Ba AA, Messanvi F, Chudasama Y. Noradrenergic modulation of stress induced catecholamine release: Opposing influence of FG7142 and yohimbine. BioRxiv. 2024:2024.05.09.593389.

  • Thomas CS, Mohammadkhani A, Rana M, Qiao M, Baimel C, Borgland SL. Optogenetic stimulation of lateral hypothalamic orexin/dynorphin inputs in the ventral tegmental area potentiates mesolimbic dopamine neurotransmission and promotes reward-seeking behaviours. Neuropsychopharmacology. 2022;47:728–40.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aston-Jones G, Bonaventure P, Coleman P, de Lecea L, Hartman D, Hoyer D, et al. Orexin receptors in GtoPdb v.2023.1. IUPHAR/BPS Guide to Pharmacology CITE. 2023;2023. Available from: https://doi.org/10.2218/gtopdb/F51/2023.1.

  • Richards JK, Simms JA, Steensland P, Taha SA, Borgland SL, Bonci A, et al. Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long-Evans rats. Psychopharmacol (Berl). 2008;199:109–17.

    Article 
    CAS 

    Google Scholar 

  • Boutrel B, Kenny PJ, Specio SE, Martin-Fardon R, Markou A, Koob GF, et al. Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior. Proc Natl Acad Sci USA 2005;102:19168–73.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmeichel BE, Herman MA, Roberto M, Koob GF. Hypocretin neurotransmission within the central amygdala mediates escalated cocaine self-administration and stress-induced reinstatement in rats. Biol Psychiatry. 2017;81:606–15.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gozzi A, Lepore S, Vicentini E, Merlo-Pich E, Bifone A. Differential effect of orexin-1 and CRF-1 antagonism on stress circuits: A fMRI study in the rat with the pharmacological stressor yohimbine. Neuropsychopharmacology. 2013;38:2120–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng CHK, Costall B, Ge J, Naylor RJ. The profiles of interaction of yohimbine with anxiolytic and putative anxiolytic agents to modify 5-HT release in the frontal cortex of freely-moving rats. Br J Pharmacot. 1993. https://doi.org/10.1111/j.1476-5381.1993.tb13924.x.

  • Newman-Tancredi A, Nicolas JP, Audinot V, Gavaudan S, Verrièle L, Touzard M, et al. Actions of α2 adrenoceptor ligands at α(2A) and 5-HT(1A) receptors: The antagonist, atipamezole, and the agonist, dexmedetomidine, are highly selective for α(2A) adrenoceptors. Naunyn Schmiedebergs Arch Pharm. 1998;358:197–206.

    Article 
    CAS 

    Google Scholar 

  • Zaretsky DV, Zaretskaia MV, Dimicco JA, Rusyniak DE. Yohimbine is a 5-HT 1A agonist in rats in doses exceeding 1 mg/kg. Neurosci Lett. 2015;606:215–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Powell SB, Palomo J, Carasso BS, Bakshi VP, Geyer MA. Yohimbine disrupts prepulse inhibition in rats via action at 5-HT1A receptors, not alpha2-adrenoceptors. Psychopharmacol (Berl). 2005;180:491–500.

    Article 
    CAS 

    Google Scholar 

  • Fletcher PJ, Zeeb FD, Browne CJ, Higgins GA, Soko AD. Effects of 5-HT1A, 5-HT2A and 5-HT2C receptor agonists and antagonists on responding for a conditioned reinforcer and its enhancement by methylphenidate. Psychopharmacol (Berl). 2017;234:889–902.

    Article 
    CAS 

    Google Scholar 

  • Dzung Lê A, Funk D, Harding S, Juzytsch W, Fletcher PJ. The role of noradrenaline and 5-hydroxytryptamine in yohimbine-induced increases in alcohol-seeking in rats. Psychopharmacol (Berl). 2009;204:477–88.

    Article 

    Google Scholar 

  • Stewart J. Pat h wva ys to re la pse: t he neuro biolo y of ru and stress-induced relapse to drug-taking. J Psychiatry Neurosci. 2000;25:125–36.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stewart J. Psychological and neural mechanisms of relapse. Philos Trans R Soc B Biol Sci 2008;363:3147–58.

    Article 

    Google Scholar 

  • Shaham Y, Shalev U, Lu L, De Wit H, Stewart J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacol (Berl). 2003;168:3–20.

    Article 
    CAS 

    Google Scholar 

  • Tardelli VS, Berro LF, Gerra G, Tadonio L, Bisaga A, Fidalgo TM. Prescription psychostimulants for cocaine use disorder: A review from molecular basis to clinical approach. Addict Biol. 2023;28:e13271.

    Article 
    PubMed 

    Google Scholar 

  • Owen JA, Nakatsu SL, Fenemore J, Condra M, Surridge DHC, Morales A. The pharmacokinetics of yohimbine in man. Eur J Clin Pharm. 1987;32:577–82.

    Article 
    CAS 

    Google Scholar 

  • Ostojic SM. Yohimbine: the effects on body composition and exercise performance in soccer players. Res Sport Med. 2006;14:289–99.

    Article 

    Google Scholar 

  • Cimolai N, Cimolai T. Yohimbine use for physical enhancement and its potential toxicity. J Diet Suppl. 2011;8:346–54.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Murburg MM, Villacres EC, Ko GN, Veith RC. Effects of yohimbine on human sympathetic nervous system function. J Clin Endocrinol Metab. 1991;73:861–5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Curley DE, Vasaturo-Kolodner TR, Cannella N, Ciccocioppo R, Haass-Koffler CL. Yohimbine as a pharmacological probe for alcohol research: a systematic review of rodent and human studies. Neuropsychopharmacology. 2022;47:2111–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tuerk PW, Wangelin BC, Powers MB, Smits JAJ, Acierno R, Myers US, et al. Augmenting treatment efficiency in exposure therapy for PTSD: a randomized double-blind placebo-controlled trial of yohimbine HCl. 2018. https://doi.org/10.1080/16506073.2018.1432679.

  • Smits JAJ, Rosenfield D, Davis ML, Julian K, Handelsman PR, Otto MW, et al. Yohimbine enhancement of exposure therapy for social anxiety disorder: A randomized controlled trial. Biol Psychiatry. 2014;75:840–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Holmes A, Quirk GJ. Pharmacological facilitation of fear extinction and the search for adjunct treatments for anxiety disorders – the case of yohimbine. Trends Pharm Sci. 2010;31:2–7.

    Article 
    CAS 
    PubMed 

    Google Scholar