close
close

Exploring the progression of drug dependence in a methamphetamine self-administration rat model through targeted and non-targeted metabolomics analyses

  • United Nations Office on Drugs and Crime (UNODC). World Drug Report 2023 (United Nations, 2023).

  • Nordahl, T. E., Salo, R. & Leamon, M. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: A review. J. Neuropsychiatry Clin. Neurosci. 15, 317–325. (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koob, G. F. & Volkow, N. D. Neurocircuitry of addiction. Neuropsychopharmacology. 35, 217–238. (2010).

    Article 
    PubMed 

    Google Scholar 

  • Ashok, A. H., Mizuno, Y., Volkow, N. D. & Howes, O. D. Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: A systematic review and meta-analysis. JAMA Psychiatry. 74, 511–519. (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, W. et al. Identification of morphine and heroin-treatment in mice using metabonomics. Metabolites 11 (2021).

  • Zheng, T. et al. Metabolic phenotype of rats exposed to heroin and potential markers of heroin abuse. Drug Alcohol Depend. 127, 177–186. (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seo, M. J. et al. Mass spectrometry-based metabolomics in hair from current and former patients with methamphetamine use disorder. Arch. Pharm. Res. 44, 890–901. (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, T. et al. Untargeted metabolomics analysis by gas chromatography/time-of-flight mass spectrometry of human serum from methamphetamine abusers. Addict. Biol. 26, e13062. (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Caspani, G., Sebők, V., Sultana, N., Swann, J. R. & Bailey, A. Metabolic phenotyping of opioid and psychostimulant addiction: a novel approach for biomarker discovery and biochemical understanding of the disorder. Br. J. Pharmacol. 179, 1578–1606. (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Siefried, K. J., Acheson, L. S., Lintzeris, N. & Ezard, N. Pharmacological treatment of methamphetamine/amphetamine dependence: A systematic review. CNS Drugs. 34, 337–365. (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dole, V. P. Narcotic addiction, physical dependence and relapse. N Engl. J. Med. 286, 988–992. (1972).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, M. et al. Current understanding of methamphetamine-associated metabolic changes revealed by the metabolomics approach. Metabolites. 9 (2019).

  • Kim, S. et al. Integrated non-targeted and targeted metabolomics uncovers dynamic metabolic effects during short-term abstinence in methamphetamine self-administering rats. J. Proteome Res. 18, 3913–3925. (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, S. et al. Revealing metabolic perturbation following heavy methamphetamine abuse by human hair metabolomics and network analysis. Int. J. Mol. Sci. 21 (2020).

  • Corrigall, W. A. Nicotine self-administration in animals as a dependence model. Nicotine Tob. Res. 1, 11–20. (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spanagel, R. Animal models of addiction. Dialogues Clin. Neurosci. 19, 247–258. (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yanagita, T. Self-administration studies on psychological dependence. Trends Pharmacol. Sci. 1, 161–164 (1979).

    Article 

    Google Scholar 

  • Kilbey, M. M. & Ellinwood, E. H. Jr. Self-administration of morphine in the cat. Int. J. Addict. 15, 447–460. (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spano, M. S., Fadda, P., Fratta, W. & Fattore, L. Cannabinoid-opioid interactions in drug discrimination and self-administration: Effect of maternal, postnatal, adolescent and adult exposure to the drugs. Curr. Drug Targets. 11, 450–461. (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, L., Wu, N., Zhao, T. Y. & Li, J. The potential biomarkers of drug addiction: proteomic and metabolomics challenges. Biomarkers. 21, 678–685. (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • MacIntyre, D. A. et al. Serum metabolome analysis by 1H-NMR reveals differences between chronic lymphocytic leukaemia molecular subgroups. Leukemia. 24, 788–797. (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Breier, M. et al. Targeted metabolomics identifies reliable and stable metabolites in human serum and plasma samples. PLoS One. 9, e89728. (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alasmari, F. et al. Serum metabolomic analysis of male patients with cannabis or amphetamine use disorder. Metabolites. 12 (2022).

  • Choi, B. et al. Metabolic characterization in urine and hair from a rat model of methamphetamine self-administration using LC-QTOF-MS-based metabolomics. Metabolomics. 13, 119. (2017).

    Article 
    CAS 

    Google Scholar 

  • Towers, E. B. et al. Transcriptional Profile of Exercise-Induced Protection against Relapse to Cocaine seeking in a rat model. Biol. Psychiatry Glob Open. Sci. 3, 734–745. (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, J. A. Mouse and rat anesthesia and analgesia. Curr. Protoc. Neurosci. (Appendix 4, Appendix 4B) (2008).

  • Eipper-Mains, J. E. et al. Effects of cocaine and withdrawal on the mouse nucleus accumbens transcriptome. Genes Brain Behav. 12, 21–33. (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krasnova, I. N. et al. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiol. Dis. 58, 132–143. (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goodwin, C. R. et al. Phenotypic mapping of metabolic profiles using self-organizing maps of high-dimensional mass spectrometry data. Anal. Chem. 86, 6563–6571. (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ning, T., Leng, C., Chen, L., Ma, B. & Gong, X. Metabolomics analysis of serum in a rat heroin self-administration model undergoing reinforcement based on (1)H-nuclear magnetic resonance spectra. BMC Neurosci. 19, 4. (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bossert, J. M., Marchant, N. J., Calu, D. J. & Shaham, Y. The reinstatement model of drug relapse: Recent neurobiological findings, emerging research topics, and translational research. Psychopharmacol. (Berl). 229, 453–476. (2013).

    Article 
    CAS 

    Google Scholar 

  • Gass, J. T., Osborne, M. P., Watson, N. L., Brown, J. L. & Olive, M. F. mGluR5 antagonism attenuates methamphetamine reinforcement and prevents reinstatement of methamphetamine-seeking behavior in rats. Neuropsychopharmacology. 34, 820–833. (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bossert, J. M. & Stern, A. L. Role of ventral subiculum in context-induced reinstatement of heroin seeking in rats. Addict. Biol. 19, 338–342. (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cruz, F. C., Leão, R. M., Marin, M. T. & Planeta, C. S. Stress-induced reinstatement of amphetamine-conditioned place preference and changes in tyrosine hydroxylase in the nucleus accumbens in adolescent rats. Pharmacol. Biochem. Behav. 96, 160–165. (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mannangatti, P., Ramamoorthy, S. & Jayanthi, L. D. Interference of norepinephrine transporter trafficking motif attenuates amphetamine-induced locomotor hyperactivity and conditioned place preference. Neuropharmacology. 128, 132–141. (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leonard, M. Z. et al. The molecular-container calabadion-2 prevents methamphetamine-induced reinstatement in rats: A potential approach to relapse prevention? Int. J. Neuropsychopharmacol. 23, 401–405. (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, W. J., Nicholson, K. L., Dance, M. E., Morgan, R. W. & Foley, P. L. Animal models of substance abuse and addiction: Implications for science, animal welfare, and society. Comp. Med. 60, 177–188 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ewing, S. T. et al. Low-dose polypharmacology targeting dopamine D1 and D3 receptors reduces cue-induced relapse to heroin seeking in rats. Addict. Biol. 26, e12988. (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, X. et al. Preventing incubation of drug craving to treat drug relapse: From bench to bedside. Mol. Psychiatry. 28, 1415–1429. (2023).

    Article 
    PubMed 

    Google Scholar 

  • Walker, D. M. et al. Cocaine self-administration alters transcriptome-wide responses in the brain’s reward circuitry. Biol. Psychiatry. 84, 867–880. (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramirez, S. H. et al. Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells. J. Cereb. Blood Flow. Metab. 29, 1933–1945. (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krasnova, I. N. & Cadet, J. L. Methamphetamine toxicity and messengers of death. Brain Res. Rev. 60, 379–407. (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Virmani, A., Gaetani, F., Imam, S., Binienda, Z. & Ali, S. The protective role of L-carnitine against neurotoxicity evoked by drug of abuse, methamphetamine, could be related to mitochondrial dysfunction. Ann. N Y Acad. Sci. 965, 225–232. (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pekala, J. et al. L-carnitine–metabolic functions and meaning in humans life. Curr. Drug Metab. 12, 667–678. (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hoefer, M. E., Voskanian, S. J., Koob, G. F. & Pulvirenti, L. Effects of terguride, ropinirole, and acetyl-L-carnitine on methamphetamine withdrawal in the rat. Pharmacol. Biochem. Behav. 83, 403–409. (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coccurello, R., Caprioli, A., Ghirardi, O. & Virmani, A. Valproate and acetyl-L-carnitine prevent methamphetamine-induced behavioral sensitization in mice. Ann. N Y Acad. Sci. 1122, 260–275. (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fernandes, S., Salta, S. & Summavielle, T. Methamphetamine promotes α-tubulin deacetylation in endothelial cells: the protective role of acetyl-l-carnitine. Toxicol. Lett. 234, 131–138. (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fernandes, S., Salta, S., Bravo, J., Silva, A. P. & Summavielle, T. Acetyl-L-carnitine prevents methamphetamine-induced structural damage on endothelial cells via ILK-related MMP-9 activity. Mol. Neurobiol. 53, 408–422. (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, T. et al. The metabolic impact of methamphetamine on the systemic metabolism of rats and potential markers of methamphetamine abuse. Mol. Biosyst. 10, 1968–1977. (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Williams, K., Romano, C., Dichter, M. A. & Molinoff, P. B. Modulation of the NMDA receptor by polyamines. Life Sci. 48, 469–498. (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shimosato, K., Watanabe, S., Marley, R. J. & Saito, T. Increased polyamine levels and changes in the sensitivity to convulsions during chronic treatment with cocaine in mice. Brain Res. 684, 243–247. (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prendergast, M. A. & Mulholland, P. J. Glucocorticoid and polyamine interactions in the plasticity of glutamatergic synapses that contribute to ethanol-associated dependence and neuronal injury. Addict. Biol. 17, 209–223. (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • García-Marchena, N. et al. Plasma amino acid concentrations in patients with alcohol and/or cocaine use disorders and their association with psychiatric comorbidity and sex. Biomedicines 10 (2022).

  • Sakurada, T., Onodera, K., Tadano, T. & Kisara, K. Effects of polyamines on the central nervous system. Jpn J. Pharmacol. 25, 653–661. (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Makletsova, M. et al. The role of polyamines in the mechanisms of cognitive impairment. Neurochem.J. 16, 283–294 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kalinichenko, L. S., Gulbins, E., Kornhuber, J. & Müller, C. P. The role of sphingolipids in psychoactive drug use and addiction. J. Neural Transm. (Vienna). 125, 651–672. (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, Y. et al. Cocaine modifies brain lipidome in mice. Mol. Cell. Neurosci. 85, 29–44. (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, L. et al. Remodeling of brain lipidome in methamphetamine-sensitized mice. Toxicol. Lett. 279, 67–76. (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ross, B. M. et al. Decreased activity of brain phospholipid metabolic enzymes in human users of cocaine and methamphetamine. Drug Alcohol Depend. 67, 73–79. (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ross, B. M. & Turenne, S. D. Chronic cocaine administration reduces phospholipase A(2) activity in rat brain striatum. Prostaglandins Leukot. Essent. Fat. Acids. 66, 479–483. (2002).

    Article 
    CAS 

    Google Scholar 

  • Feier, G. et al. Behavioral changes and brain energy metabolism dysfunction in rats treated with methamphetamine or dextroamphetamine. Neurosci. Lett. 530, 75–79. (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Estler, C. J. & Ammon, H. P. Modification by two beta-adrenergic blocking drugs of the effects of methamphetamine on behaviour and brain metabolism of mice. J. Neurochem. 18, 777–779. (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stephans, S. E., Whittingham, T. S., Douglas, A. J., Lust, W. D. & Yamamoto, B. K. Substrates of energy metabolism attenuate methamphetamine-induced neurotoxicity in striatum. J. Neurochem. 71, 613–621. (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shima, N. et al. Influences of methamphetamine-induced acute intoxication on urinary and plasma metabolic profiles in the rat. Toxicology. 287, 29–37. (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bu, Q. et al. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats. Neurotoxicology. 36, 17–23. (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, M. et al. Metabolomics profiling of methamphetamine addicted human serum and three rat brain areas. RSC Adv. 9, 41107–41119. (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcos, A. et al. The effects of combined intravenous cocaine and ethanol self-administration on the behavioral and amino acid profile of young adult rats. PLoS One. 15, e0227044. (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mews, P. et al. Convergent abnormalities in striatal gene networks in human cocaine use disorder and mouse cocaine administration models. Sci. Adv. 9, eadd8946. (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Campbell, U. C. & Carroll, M. E. Acquisition of drug self-administration: environmental and pharmacological interventions. Exp. Clin. Psychopharmacol. 8, 312–325. (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Montague, P. R., Gancayco, C. D., Winn, M. J., Marchase, R. B. & Friedlander, M. J. Role of NO production in NMDA receptor-mediated neurotransmitter release in cerebral cortex. Science. 263, 973–977. (1994).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Sandor, N. T., Brassai, A., Puskas, A. & Lendvai, B. Role of nitric oxide in modulating neurotransmitter release from rat striatum. Brain Res. Bull. 36, 483–486. (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Motahari, A. A., Sahraei, H. & Meftahi, G. H. Role of nitric oxide on dopamine release and morphine-dependency. Basic. Clin. Neurosci. 7, 283–290. (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Centonze, D., Gubellini, P., Pisani, A., Bernardi, G. & Calabresi, P. Dopamine, acetylcholine and nitric oxide systems interact to induce corticostriatal synaptic plasticity. Rev. Neurosci. 14, 207–216. (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hardingham, N., Dachtler, J. & Fox, K. The role of nitric oxide in pre-synaptic plasticity and homeostasis. Front. Cell. Neurosci. 7, 190. (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masood, A., Banerjee, B., Vijayan, V. K. & Ray, A. Modulation of stress-induced neurobehavioral changes by nitric oxide in rats. Eur. J. Pharmacol. 458, 135–139. (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Malinski, T. Nitric oxide and nitroxidative stress in Alzheimer’s disease. J. Alzheimers Dis. 11, 207–218. (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Collins, S. L. & Kantak, K. M. Neuronal nitric oxide synthase inhibition decreases cocaine self-administration behavior in rats. Psychopharmacol. (Berl). 159, 361–369. (2002).

    Article 
    CAS 

    Google Scholar 

  • Orsini, C., Izzo, E., Koob, G. F. & Pulvirenti, L. Blockade of nitric oxide synthesis reduces responding for cocaine self-administration during extinction and reinstatement. Brain Res. 925, 133–140. (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sahraei, H. et al. Effects of nitric oxide on morphine self-administration in rat. Pharmacol. Biochem. Behav. 77, 111–116. (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, A. C. W. et al. Accumbens nNOS interneurons regulate cocaine relapse. J. Neurosci. 37, 742–756. (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cloak, C. C., Alicata, D., Chang, L., Andrews-Shigaki, B. & Ernst, T. Age and sex effects levels of choline compounds in the anterior cingulate cortex of adolescent methamphetamine users. Drug Alcohol Depend. 119, 207–215. (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salo, R. et al. Extended findings of brain metabolite normalization in MA-dependent subjects across sustained abstinence: a proton MRS study. Drug Alcohol Depend. 113, 133–138. (2011).

    Article 
    PubMed 

    Google Scholar 

  • Ruda-Kucerova, J. et al. Sex differences in the reinstatement of methamphetamine seeking after forced abstinence in Sprague-Dawley rats. Front. Psychiatry. 6, 91. (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Job, M. O., Chojnacki, M. R., Daiwile, A. P. & Cadet, J. L. Chemogenetic inhibition of dopamine D1-expressing neurons in the dorsal striatum does not alter methamphetamine Intake in either male or female long Evans rats. Neurosci. Lett. 729, 134987. (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zlebnik, N. E. et al. Age-specific treatment effects of orexin/hypocretin-receptor antagonism on methamphetamine-seeking behavior. Drug Alcohol Depend. 224, 108719. (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gonçalves, J. et al. Extended-access methamphetamine self-administration elicits neuroinflammatory response along with blood-brain barrier breakdown. Brain Behav. Immun. 62, 306–317. (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Everett, N. A., Baracz, S. J. & Cornish, J. L. The effect of chronic oxytocin treatment during abstinence from methamphetamine self-administration on incubation of craving, reinstatement, and anxiety. Neuropsychopharmacology. 45, 597–605. (2020).

    Article 
    PubMed 

    Google Scholar 

  • Westbrook, S. R., Dwyer, M. R., Cortes, L. R. & Gulley, J. M. Extended access self-administration of methamphetamine is associated with age- and sex-dependent differences in drug taking behavior and recognition memory in rats. Behav. Brain Res. 390, 112659. (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, A., Harutyunyan, A., Schneider, B. L. & Moszczynska, A. Parkin regulates drug-taking behavior in rat model of methamphetamine use disorder. Transl. Psychiatry. 11, 293. (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vollmer, K. M. et al. A novel assay allowing drug Self-Administration, extinction, and reinstatement testing in Head-restrained mice. Front. Behav. Neurosci. 15, 744715. (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar