close
close

Drug combinations targeting antibiotic resistance

  • Murray, C. J. L. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399, 629–655 (2022).

    Article 
    CAS 

    Google Scholar 

  • D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Levy Stuart, B., FitzGerald George, B. & Macone Ann, B. Changes in Intestinal Flora of Farm Personnel after Introduction of a Tetracycline-Supplemented Feed on a Farm. N. Engl. J. Med. 295, 583–588 (1976).

    Article 

    Google Scholar 

  • Humeniuk, C. et al. β-Lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob. Agents Chemother. 46, 3045–3049 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daruka, L. et al. Antibiotics of the future are prone to resistance in Gram-negative pathogens. 2023.07.23.550022 Preprint at (2023).

  • Kohlmann, R. & Gatermann, S. G. Analysis and presentation of cumulative antimicrobial susceptibility test data – the influence of different parameters in a routine clinical microbiology laboratory. PLoS ONE 11, e0147965 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balouiri, M., Sadiki, M. & Ibnsouda, S. K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6, 71–79 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Garcia. Synergism Testing: Broth Microdilution Checkerboard and Broth Macrodilution Methods. 140–162 (American Society of Microbiology, 2010). https://doi.org/10.1128/9781555817435.ch5.12.

  • Ayrapetyan, M., Williams, T. C., Baxter, R. & Oliver, J. D. Viable but nonculturable and persister cells coexist stochastically and are induced by human serum. Infect. Immun. 83, 4194–4203 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brauner, A., Fridman, O., Gefen, O. & Balaban, N. Q. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sáez-López, E., Millán-Placer, A. C., Lucía, A. & Ramón-García, S. Amoxicillin/clavulanate in combination with rifampicin/clarithromycin is bactericidal against Mycobacterium ulcerans. PLoS Negl. Trop. Dis. 18, e0011867 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meylan, S., Andrews, I. W. & Collins, J. J. Targeting antibiotic tolerance, pathogen by pathogen. Cell 172, 1228–1238 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Levin-Reisman, I., Brauner, A., Ronin, I. & Balaban, N. Q. Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proc. Natl. Acad. Sci. 116, 14734–14739 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brauner, A., Shoresh, N., Fridman, O. & Balaban, N. Q. An experimental framework for quantifying bacterial tolerance. Biophys. J. 112, 2664–2671 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kwak, N. et al. M ycobacterium abscessus pulmonary disease: individual patient data meta-analysis. Eur. Respir. J. 54, 1801991 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Lee, S. et al. Comparative outcomes of cefazolin versus nafcillin for methicillin-susceptible Staphylococcus aureus bacteraemia: a prospective multicentre cohort study in Korea. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 24, 152–158 (2018).

    CAS 

    Google Scholar 

  • Pahil, K. S. et al. A new antibiotic traps lipopolysaccharide in its intermembrane transporter. Nature 625, 572–577 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fallone, C. A. et al. The Toronto consensus for the treatment of helicobacter pylori infection in adults. Gastroenterology 151, 51–69.e14 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Nahid, P. et al. Executive Summary: Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin. Infect. Dis. 63, 853–867 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Levy, S. B. Factors impacting on the problem of antibiotic resistance. J. Antimicrob. Chemother. 49, 25–30 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Szybalski, W. & Bryson, V. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J. Bacteriol. 64, 489–499 (1952).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maltas, J. & Wood, K. B. Pervasive and diverse collateral sensitivity profiles inform optimal strategies to limit antibiotic resistance. PLoS Biol 17, e3000515 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lázár, V. et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat. Microbiol. 3, 718–731 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lázár, V. et al. Bacterial evolution of antibiotic hypersensitivity. Mol. Syst. Biol. 9, 700 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barbosa, C., Römhild, R., Rosenstiel, P. & Schulenburg, H. Evolutionary stability of collateral sensitivity to antibiotics in the model pathogen Pseudomonas aeruginosa. eLife 8, e51481 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernando-Amado, S., Sanz-García, F. & Martínez, J. L. Rapid and robust evolution of collateral sensitivity in Pseudomonas aeruginosa antibiotic-resistant mutants. Sci. Adv. 6, eaba5493 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kavanaugh, L. G., Flanagan, J. N. & Steck, T. R. Reciprocal antibiotic collateral sensitivity in Burkholderia multivorans. Int. J. Antimicrob. Agents 56, 105994 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oz, T. et al. Strength of selection pressure is an important parameter contributing to the complexity of antibiotic resistance evolution. Mol. Biol. Evol. 31, 2387–2401 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Podnecky, N. L. et al. Conserved collateral antibiotic susceptibility networks in diverse clinical strains of Escherichia coli. Nat. Commun. 9, 3673 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barbosa, C. et al. Alternative evolutionary paths to bacterial antibiotic resistance cause distinct collateral effects. Mol. Biol. Evol. 34, 2229–2244 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Burmeister, A. R. et al. Pleiotropy complicates a trade-off between phage resistance and antibiotic resistance. Proc. Natl. Acad. Sci. USA. 117, 11207–11216 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hernando-Amado, S., Laborda, P. & Martínez, J. L. Tackling antibiotic resistance by inducing transient and robust collateral sensitivity. Nat. Commun. 14, 1723 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lázár, V. et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat. Commun. 5, 4352 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Laborda, P., Martínez, J. L. & Hernando‐Amado, S. Convergent phenotypic evolution towards fosfomycin collateral sensitivity of Pseudomonas aeruginosa antibiotic‐resistant mutants. Microb. Biotechnol. 15, 613–629 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Sakenova, N. et al. Systematic mapping of antibiotic cross-resistance and collateral sensitivity with chemical genetics. 2024.01.25.576750 Preprint at (2024).

  • Rodriguez de Evgrafov, M., Gumpert, H., Munck, C., Thomsen, T. T. & Sommer, M. O. A. Collateral resistance and sensitivity modulate evolution of high-level resistance to drug combination treatment in Staphylococcus aureus. Mol. Biol. Evol. 32, 1175–1185 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Munck, C., Gumpert, H. K., Wallin, A. I. N., Wang, H. H. & Sommer, M. O. A. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl. Med. 6, 262ra156 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Jahn, L. J. et al. Compatibility of evolutionary responses to constituent antibiotics drive resistance evolution to drug pairs. Mol. Biol. Evol. 38, 2057–2069 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Apjok, G. et al. Limited evolutionary conservation of the phenotypic effects of antibiotic resistance mutations. Mol. Biol. Evol. 36, 1601–1611 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beckley, A. M. & Wright, E. S. Identification of antibiotic pairs that evade concurrent resistance via a retrospective analysis of antimicrobial susceptibility test results. Lancet Microbe 2, e545–e554 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noto Guillen, M., Li, C., Rosener, B. & Mitchell, A. Antibacterial activity of nonantibiotics is orthogonal to standard antibiotics. Science 384, 93–100 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trastoy, R. et al. Mechanisms of Bacterial Tolerance and Persistence in the Gastrointestinal and Respiratory Environments. Clin. Microbiol. Rev. 31, e00023–18 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Irving, S. E., Choudhury, N. R. & Corrigan, R. M. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat. Rev. Microbiol. 19, 256–271 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fuentes-Hernandez, A. et al. Using a sequential regimen to eliminate bacteria at sublethal antibiotic dosages. PLoS Biol 13, e1002104 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, S., Lieberman, T. D. & Kishony, R. Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proc. Natl. Acad. Sci. USA. 111, 14494–14499 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Imamovic, L. & Sommer, M. O. A. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl. Med. 5, 204ra132 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Hernando-Amado, S. et al. Rapid Phenotypic Convergence towards Collateral Sensitivity in Clinical Isolates of Pseudomonas aeruginosa Presenting Different Genomic Backgrounds. Microbiol. Spectr. 11, e02276–22 (2022).

    PubMed 

    Google Scholar 

  • Barbosa, C., Beardmore, R., Schulenburg, H. & Jansen, G. Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model. PLoS Biol 16, e2004356 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Armstrong, D. et al. Evidence for Spread of a Clonal Strain of Pseudomonas aeruginosa among Cystic Fibrosis Clinics. J. Clin. Microbiol. 41, 2266–2267 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernando-Amado, S., Laborda, P., Valverde, J. R. & Martínez, J. L. Mutational background influences P. aeruginosa ciprofloxacin resistance evolution but preserves collateral sensitivity robustness. Proc. Natl. Acad. Sci. USA. 119, e2109370119 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diaz Caballero, J. et al. Mixed strain pathogen populations accelerate the evolution of antibiotic resistance in patients. Nat. Commun. 14, 4083 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imamovic, L. et al. Drug-driven phenotypic convergence supports rational treatment strategies of chronic infections. Cell 172, 121–134.e14 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stracy, M. et al. Minimizing treatment-induced emergence of antibiotic resistance in bacterial infections. Science 375, 889–894 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stone, L. K. et al. Compounds that select against the tetracycline resistance efflux pump. Nat. Chem. Biol. 12, 902–904 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herencias, C. et al. Collateral sensitivity associated with antibiotic resistance plasmids. eLife 10, e65130 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • β-lactamase expression induces collateral sensitivity in Escherichia coli | bioRxiv. https://www.biorxiv.org/content/10.1101/2023.11.22.568265v1

  • Lepper, M. H. & Dowling, H. F. Treatment of pneumococcic meningitis with penicillin compared with penicillin plus aureomycin; studies including observations on an apparent antagonism between penicillin and aureomycin. AMA Arch. Intern. Med. 88, 489–494 (1951).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singh, N. & Yeh, P. J. Suppressive drug combinations and their potential to combat antibiotic resistance. J. Antibiot. (Tokyo) 70, 1033–1042 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maier, L. et al. Unravelling the collateral damage of antibiotics on gut bacteria. Nature 599, 120–124 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brochado, A. R. Species-specific activity of antibacterial drug combinations. Nature 559, 259–263 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hind, C. K. et al. Evaluation of a library of FDA-approved drugs for their ability to potentiate antibiotics against multidrug-resistant Gram-negative pathogens. Antimicrob. Agents Chemother. 63, e00769–19 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lázár, V., Snitser, O., Barkan, D. & Kishony, R. Antibiotic combinations reduce Staphylococcus aureus clearance. Nature 610, 540–546 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cacace, E. et al. Systematic analysis of drug combinations against Gram-positive bacteria. Nat. Microbiol. 8, 2196–2212 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ejim, L. et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat. Chem. Biol. 7, 348–350 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sorlí, L. et al. Trough colistin plasma level is an independent risk factor for nephrotoxicity: a prospective observational cohort study. BMC Infect. Dis. 13, 380 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baym, M., Stone, L. K. & Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351, aad3292 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J., Gefen, O., Ronin, I., Bar-Meir, M. & Balaban, N. Q. Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367, 200–204 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, E. J., Stokes, J. M. & Collins, J. J. Eradicating bacterial persisters with combinations of strongly and weakly metabolism-dependent antibiotics. Cell Chem. Biol. 27, 1544–1552.e3 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ocampo, P. S. et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob. Agents Chemother. 58, 4573–4582 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pankey, G. A. & Sabath, L. D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 38, 864–870 (2004).

    Article 
    CAS 

    Google Scholar 

  • Klepser, M. E., Nicolau, D. P., Quintiliani, R. & Nightingale, C. H. Bactericidal activity of low-dose clindamycin administered at 8- and 12-hour intervals against Staphylococcus aureus, Streptococcus pneumoniae, and Bacteroides fragilis. Antimicrob. Agents Chemother. 41, 630–635 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zahedi Bialvaei, A., Rahbar, M., Yousefi, M., Asgharzadeh, M. & Samadi Kafil, H. Linezolid: a promising option in the treatment of Gram-positives. J. Antimicrob. Chemother. 72, 354–364 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Léger, L. β-Lactam Exposure Triggers Reactive Oxygen Species Formation in Enterococcus faecalis via the Respiratory Chain Component DMK. Cell Rep. 29, 2184–2191 3 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Beppler, C. et al. When more is less: Emergent suppressive interactions in three-drug combinations. BMC Microbiol 17, 107 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katzir, I., Cokol, M., Aldridge, B. B. & Alon, U. Prediction of ultra-high-order antibiotic combinations based on pairwise interactions. PLoS Comput. Biol. 15, e1006774 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wood, K., Nishida, S., Sontag, E. D. & Cluzel, P. Mechanism-independent method for predicting response to multidrug combinations in bacteria. Proc. Natl. Acad. Sci. 109, 12254–12259 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zimmer, A., Katzir, I., Dekel, E., Mayo, A. E. & Alon, U. Prediction of multidimensional drug dose responses based on measurements of drug pairs. Proc. Natl. Acad. Sci. USA. 113, 10442–10447 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zimmer, A., Tendler, A., Katzir, I., Mayo, A. & Alon, U. Prediction of drug cocktail effects when the number of measurements is limited. PLOS Biol 15, e2002518 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 555, 623–628 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bahl, D. et al. In vitro activities of ciprofloxacin and rifampin alone and in combination against growing and nongrowing strains of methicillin-susceptible and methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 41, 1293–1297 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bollenbach, T., Quan, S., Chait, R. & Kishony, R. Nonoptimal Microbial Response to Antibiotics Underlies Suppressive Drug Interactions. Cell 139, 707–718 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, T. H. & Alford, R. H. Antagonism by chloramphenicol of broad-spectrum beta-lactam antibiotics against Klebsiella pneumoniae. Antimicrob. Agents Chemother. 25, 405–407 (1984).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jawetz, E., Gunnison, J. B., Speck, R. S. & Coleman, V. R. Studies on antibiotic synergism and antagonism; the interference of chloramphenicol with the action of penicillin. AMA Arch. Intern. Med. 87, 349–359 (1951).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johansen, H. K., Jensen, T. G., Dessau, R. B., Lundgren, B. & Frimodt-Moller, N. Antagonism between penicillin and erythromycin against Streptococcus pneumoniae in vitro and in vivo. J. Antimicrob. Chemother. 46, 973–980 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lange, K., Buerger, M., Stallmach, A. & Bruns, T. Effects of Antibiotics on Gut Microbiota. Dig. Dis. 34, 260–268 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. J. Clin. Invest. 124, 4212–4218 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zinner, S. H., Provonchee, R. B., Elias, K. S. & Peter, G. Effect of clindamycin on the in vitro activity of amikacin and gentamicin against gram-negative bacilli. Antimicrob. Agents Chemother. 9, 661–664 (1976).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaisson, R. E. Treatment of Chronic Infections with Rifamycins: Is Resistance Likely To Follow? Antimicrob. Agents Chemother. 47, 3037–3039 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rieder, H. L. Interventions for Tuberculosis Control and Elimination. (International Union against Tuberculosis and Lung Disease, Paris, 2002).

  • Pena-Miller, R. et al. When the Most Potent Combination of Antibiotics Selects for the Greatest Bacterial Load: The Smile-Frown Transition. PLoS Biol 11, e1001540 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hegreness, M., Shoresh, N., Damian, D., Hartl, D. & Kishony, R. Accelerated evolution of resistance in multidrug environments. Proc. Natl. Acad. Sci. USA. 105, 13977–13981 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Torella, J. P., Chait, R. & Kishony, R. Optimal Drug Synergy in Antimicrobial Treatments. PLOS Comput. Biol. 6, e1000796 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y., Limaye, P. B., Renaud, H. J. & Klaassen, C. D. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice. Toxicol. Appl. Pharmacol. 277, 138–145 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Russ, D. & Kishony, R. Additivity of inhibitory effects in multidrug combinations. Nat. Microbiol. 3, 1339–1345 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeh, P., Tschumi, A. I. & Kishony, R. Functional classification of drugs by properties of their pairwise interactions. Nat. Genet. 38, 489–494 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y., Shi, W., Zhang, W. & Mitchison, D. Mechanisms of pyrazinamide action and resistance. Microbiol. Spectr. 2, 1–12 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, K., Li, X., Yu, C. & Wang, Y. Promising therapeutic strategies against microbial biofilm challenges. Front. Cell. Infect. Microbiol. 10, 359 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, Y., Fan, Y., Wang, R., An, M.-M. & Liang, B.-B. Synergistic effects of aminoglycosides and fosfomycin on Pseudomonas aeruginosa in vitro and biofilm infections in a rat model. J. Antimicrob. Chemother. 64, 563–566 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pettit, R. K. et al. In vivo activity of anprocide alone, and in vitro activity in combination with conventional antibiotics against Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol. 58, 1203–1206 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cernohorská, L. & Votava, M. Antibiotic synergy against biofilm-forming Pseudomonas aeruginosa. Folia Microbiol. (Praha) 53, 57–60 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Rose, W. E. & Poppens, P. T. Impact of biofilm on the in vitro activity of vancomycin alone and in combination with tigecycline and rifampicin against Staphylococcus aureus. J. Antimicrob. Chemother. 63, 485–488 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vestby, L. K., Grønseth, T., Simm, R. & Nesse, L. L. Bacterial Biofilm and its Role in the Pathogenesis of Disease. Antibiot. Basel Switz. 9, 59 (2020).

    CAS 

    Google Scholar 

  • Hawas, S., Verderosa, A. D. & Totsika, M. Combination Therapies for Biofilm Inhibition and Eradication: A Comparative Review of Laboratory and Preclinical Studies. Front. Cell. Infect. Microbiol. 12, 850030 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gefen, O., Chekol, B., Strahilevitz, J. & Balaban, N. Q. TDtest: easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay. Sci. Rep. 7, 41284 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, E. J. et al. Discovery of antibiotics that selectively kill metabolically dormant bacteria. Cell Chem. Biol. 31, 712–728.e9 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meyer, C. T. et al. A high-throughput and low-waste viability assay for microbes. Nat. Microbiol. 8, 2304–2314 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar