close
close

Recent advances in Alzheimer’s disease: Mechanisms, clinical trials and new drug development strategies

  • WHO. A blueprint for dementia research. Geneva: World Health Organization (2022).

  • Knopman, D. S. et al. Alzheimer disease. Nat. Rev. Dis. Prim. 7, 33 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Querfurth, H. W. & LaFerla, F. M. Alzheimer’s disease. N. Engl. J. Med. 362, 329–344 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 19, 1598–1695 (2023).

  • Abdelnour, C. et al. Perspectives and challenges in patient stratification in Alzheimer’s disease. Alzheimers Res. Ther. 14, 112 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cummings, J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol. Neurodegener. 16, 2 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graff-Radford, J. et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol. 20, 222–234 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falgàs, N., Walsh, C. M., Neylan, T. C. & Grinberg, L. T. Deepen into sleep and wake patterns across Alzheimer’s disease phenotypes. Alzheimers Dement. 17, 1403–1406 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Atri, A. The Alzheimer’s disease clinical spectrum: diagnosis and management. Med. Clin. North Am. 103, 263–293 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Maciejewska, K., Czarnecka, K. & Szymański, P. A review of the mechanisms underlying selected comorbidities in Alzheimer’s disease. Pharm. Rep. 73, 1565–1581 (2021).

    Article 

    Google Scholar 

  • Dubois, B. et al. Biomarkers in Alzheimer’s disease: role in early and differential diagnosis and recognition of atypical variants. Alzheimers Res. Ther. 15, 175 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katabathula, S., Davis, P. B. & Xu, R. Comorbidity-driven multi-modal subtype analysis in mild cognitive impairment of Alzheimer’s disease. Alzheimers Dement. 19, 1428–1439 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Gong, X. et al. A red-emitting mitochondria targetable fluorescent probe for detecting viscosity in HeLa, zebrafish, and mice. Anal. Methods 16, 293–300 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. et al. ALDH2 contributes to melatonin-induced protection against APP/PS1 mutation-prompted cardiac anomalies through cGAS-STING-TBK1-mediated regulation of mitophagy. Signal Transduct. Target Ther. 5, 119 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salasova, A., Monti, G., Andersen, O. M. & Nykjaer, A. Finding memo: versatile interactions of the VPS10p-Domain receptors in Alzheimer’s disease. Mol. Neurodegener. 17, 74 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marde, V. S. et al. Alzheimer’s disease and sleep disorders: Insights into the possible disease connections and the potential therapeutic targets. Asian J. Psychiatr. 68, 102961 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Fehsel, K. & Christl, J. Comorbidity of osteoporosis and Alzheimer’s disease: Is ‘AKT ‘-ing on cellular glucose uptake the missing link? Ageing Res. Rev. 76, 101592 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gunes, S. et al. Biomarkers for Alzheimer’s disease in the current state: a narrative review. Int J. Mol. Sci. 23, 4962 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, T. et al. Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: A meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res. Rev. 72, 101503 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lloret, A. et al. When does Alzheimer’s disease really start? The role of biomarkers. Int J. Mol. Sci. 20, 5536 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Porsteinsson, A. P. et al. Diagnosis of early Alzheimer’s disease: Clinical practice in 2021. J. Prev. Alzheimers Dis. 8, 371–386 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Nedelec, T. et al. Identifying health conditions associated with Alzheimer’s disease up to 15 years before diagnosis: an agnostic study of French and British health records. Lancet Digit. Health 4, e169–e178 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, X. X. et al. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J. Prev. Alzheimers Dis. 8, 313–321 (2021).

    PubMed 

    Google Scholar 

  • Logroscino, G. Prevention of Alzheimer’s disease and dementia: the evidence is out there, but new high-quality studies and implementation are needed. J. Neurol. Neurosurg. Psychiatry 91, 1140–1141 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Crous-Bou, M., Minguillón, C., Gramunt, N. & Molinuevo, J. L. Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimers Res. Ther. 9, 71 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Omura, J. D. et al. Modifiable Risk Factors for Alzheimer Disease and Related Dementias Among Adults Aged ≥45 Years – United States, 2019. MMWR Morb. Mortal. Wkly Rep. 71, 680–685 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, D. F. & Li, M. Toward a Full Understanding of Causal and Modifiable Risk Factors for Alzheimer’s Disease by Integrative Phenome-wide Association Studies. Biol. Psychiatry 93, 756–758 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Silva, M. V. F. et al. Alzheimer’s disease: risk factors and potentially protective measures. J. Biomed. Sci. 26, 33 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beata, B. K. et al. Alzheimer’s Disease-Biochemical and Psychological Background for Diagnosis and Treatment. Int J. Mol. Sci. 24, 1059 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thakral, S. et al. Alzheimer’s disease: Molecular aspects and treatment opportunities using herbal drugs. Ageing Res. Rev. 88, 101960 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Stanciu, G. D. et al. Alzheimer’s Disease Pharmacotherapy in Relation to Cholinergic System Involvement. Biomolecules 10, 40 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hampel, H., Lista, S. & Khachaturian, Z. S. Development of biomarkers to chart all Alzheimer’s disease stages: the royal road to cutting the therapeutic Gordian Knot. Alzheimers Dement. 8, 312–336 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sutphen, C. L., Fagan, A. M. & Holtzman, D. M. Progress update: fluid and imaging biomarkers in Alzheimer’s disease. Biol. Psychiatry 75, 520–526 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Lista, S. et al. CSF Aβ1-42 combined with neuroimaging biomarkers in the early detection, diagnosis and prediction of Alzheimer’s disease. Alzheimers Dement. 10, 381–392 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Reiman, E. M. Alzheimer disease in 2016: Putting AD treatments and biomarkers to the test. Nat. Rev. Neurol. 13, 74–76 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Davis, K. L. & Powchik, P. Tacrine. Lancet 345, 625–630 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qizilbash, N. et al. Cholinesterase inhibition for Alzheimer disease: a meta-analysis of the tacrine trials. Dementia Trialists’ Collaboration. JAMA 280, 1777–1782 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jarrott, B. Tacrine: In vivo veritas. Pharm. Res. 116, 29–31 (2017).

    Article 

    Google Scholar 

  • Watkins, P. B. et al. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 271, 992–998 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Los Ríos, C. & Marco-Contelles, J. Tacrines for Alzheimer’s disease therapy. III. The PyridoTacrines. Eur. J. Med. Chem. 166, 381–389 (2019).

    Article 

    Google Scholar 

  • Birks, J. S. & Harvey, R. J. Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst. Rev. 6, CD001190 (2018).

    PubMed 

    Google Scholar 

  • Cui, X. et al. Donepezil, a drug for Alzheimer’s disease, promotes oligodendrocyte generation and remyelination. Acta Pharm. Sin. 40, 1386–1393 (2019).

    Article 
    CAS 

    Google Scholar 

  • Brewster, J. T. 2nd, Dell’Acqua, S., Thach, D. Q. & Sessler, J. L. Classics in Chemical Neuroscience: Donepezil. ACS Chem. Neurosci. 10, 155–167 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feldman, H. H. & Lane, R. Rivastigmine: a placebo controlled trial of twice daily and three times daily regimens in patients with Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 78, 1056–1063 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rösler, M. et al. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial. BMJ 318, 633–638 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coyle, J. & Kershaw, P. Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimer’s disease. Biol. Psychiatry 49, 289–299 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scott, L. J. & Goa, K. L. Galantamine: a review of its use in Alzheimer’s disease. Drugs 60, 1095–1122 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marco-Contelles, J. et al. Synthesis and pharmacology of galantamine. Chem. Rev. 106, 116–133 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Robinson, D. M. & Keating, G. M. Memantine: a review of its use in Alzheimer’s disease. Drugs 66, 1515–1534 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reisberg, B. et al. Memantine in moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 348, 1333–1341 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Greig, S. L. Memantine ER/Donepezil: A Review in Alzheimer’s Disease. CNS Drugs 29, 963–970 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deardorff, W. J. & Grossberg, G. T. A fixed-dose combination of memantine extended-release and donepezil in the treatment of moderate-to-severe Alzheimer’s disease. Drug Des. Dev. Ther. 10, 3267–3279 (2016).

    Article 
    CAS 

    Google Scholar 

  • Benek, O., Korabecny, J. & Soukup, O. A Perspective on Multi-target Drugs for Alzheimer’s Disease. Trends Pharm. Sci. 41, 434–445 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Syed, Y. Y. Sodium Oligomannate: First Approval. Drugs 80, 441–444 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Wang, T. et al. A phase II randomized trial of sodium oligomannate in Alzheimer’s dementia. Alzheimers Res. Ther. 12, 110 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, S. et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res. Ther. 13, 62 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cummings, J. & Salloway, S. Aducanumab: Appropriate use recommendations. Alzheimers Dement 18, 531–533 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dhillon, S. Aducanumab: First Approval. Drugs 81, 1437–1443 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Behl, T. et al. “Aducanumab” making a comeback in Alzheimer’s disease: An old wine in a new bottle. Biomed. Pharmacother. 148, 112746 (2022).

  • Larkin, H. D. Lecanemab Gains FDA Approval for Early Alzheimer Disease. JAMA 329, 363 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Harris, E. Alzheimer Drug Lecanemab Gains Traditional FDA Approval. JAMA 330, 495 (2023).

    PubMed 

    Google Scholar 

  • van Dyck, C. H. et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 388, 9–21 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Sims, J. R. et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA 330, 512–527 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hippius, H. & Neundörfer, G. The discovery of Alzheimer’s disease. Dialogues Clin. Neurosci. 5, 101–108 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hajjo, R., Sabbah, D. A., Abusara, O. H. & Al Bawab, A. Q. A Review of the Recent Advances in Alzheimer’s Disease Research and the Utilization of Network Biology Approaches for Prioritizing Diagnostics and Therapeutics. Diagnostics 12, 2975 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burns, S. et al. Therapeutics of Alzheimer’s Disease: Recent Developments. Antioxidants 11, 2402 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. Targeting Bromodomain-Selective Inhibitors of BET Proteins in Drug Discovery and Development. J. Med. Chem. 65, 5184–5211 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feng, L. et al. Dual-target inhibitors of bromodomain and extra-terminal proteins in cancer: A review from medicinal chemistry perspectives. Med. Res. Rev. 42, 710–743 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tan, L. et al. Development of Dual Inhibitors Targeting Epidermal Growth Factor Receptor in Cancer Therapy. J. Med. Chem. 65, 5149–5183 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Silva, G. M. et al. Allosteric Modulators of Potential Targets Related to Alzheimer’s Disease: a Review. ChemMedChem 14, 1467–1483 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, P., Clausen, M. H. & Nielsen, T. E. Allosteric small-molecule kinase inhibitors. Pharm. Ther. 156, 59–68 (2015).

    Article 
    CAS 

    Google Scholar 

  • Boike, L., Henning, N. J. & Nomura, D. K. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 21, 881–898 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, M. et al. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct. Target Ther. 7, 181 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott, D. E., Bayly, A. R., Abell, C. & Skidmore, J. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat. Rev. Drug Discov. 15, 533–550 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blazer, L. L. & Neubig, R. R. Small molecule protein-protein interaction inhibitors as CNS therapeutic agents: current progress and future hurdles. Neuropsychopharmacology 34, 126–141 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, P. P., Xie, Y., Meng, X. Y. & Kang, J. S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target Ther. 4, 29 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fedele, E. Anti-Amyloid Therapies for Alzheimer’s Disease and the Amyloid Cascade Hypothesis. Int. J. Mol. Sci. 24, 14499 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kepp, K. P. et al. The amyloid cascade hypothesis: an updated critical review. Brain 146, 3969–3990 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Rubin, L. et al. Genetic Risk Factors for Alzheimer’s Disease in Racial/Ethnic Minority Populations in the U.S.: A Scoping Review. Front. Public Health 9, 784958 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andrews, S. J. et al. The complex genetic architecture of Alzheimer’s disease: novel insights and future directions. EBioMedicine 90, 104511 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hampel, H. et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 26, 5481–5503 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eid, A., Mhatre, I. & Richardson, J. R. Gene-environment interactions in Alzheimer’s disease: A potential path to precision medicine. Pharm. Ther. 199, 173–187 (2019).

    Article 
    CAS 

    Google Scholar 

  • Boyd, R. J., Avramopoulos, D., Jantzie, L. L. & McCallion, A. S. Neuroinflammation represents a common theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. J. Neuroinflamm. 19, 223 (2022).

    Article 

    Google Scholar 

  • Rahman, M. A. et al. Emerging risk of environmental factors: insight mechanisms of Alzheimer’s diseases. Environ. Sci. Pollut. Res. Int. 27, 44659–44672 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Galton, C. J., Patterson, K., Xuereb, J. H. & Hodges, J. R. Atypical and typical presentations of Alzheimer’s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain 123, 484–498 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Sirkis, D. W. et al. Dissecting the clinical heterogeneity of early-onset Alzheimer’s disease. Mol. Psychiatry 27, 2674–2688 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lam, B. et al. Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimers Res. Ther. 5, 1 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aisen, P. S. et al. On the path to 2025: understanding the Alzheimer’s disease continuum. Alzheimers Res. Ther. 9, 60 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morató, X. et al. Symptomatic and Disease-Modifying Therapy Pipeline for Alzheimer’s Disease: Towards a Personalized Polypharmacology Patient-Centered Approach. Int. J. Mol. Sci. 23, 9305 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Selkoe, D. J. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81, 741–766 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Whitehouse, P. J. et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237–1239 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perry, E. Acetylcholine and Alzheimer’s disease. Br. J. Psychiatry 152, 737–740 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tagliavini, F. & Pilleri, G. Neuronal counts in basal nucleus of Meynert in Alzheimer disease and in simple senile dementia. Lancet 1, 469–470 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J., Sun, M., Cui, X. & Li, C. Protective Effects of Flavonoids against Alzheimer’s Disease: Pathological Hypothesis, Potential Targets, and Structure-Activity Relationship. Int J. Mol. Sci. 23, 10020 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Auld, D. S., Kornecook, T. J., Bastianetto, S. & Quirion, R. Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol. 68, 209–245 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Z. R., Huang, J. B., Yang, S. L. & Hong, F. F. Role of Cholinergic Signaling in Alzheimer’s Disease. Molecules 27, 1816 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X. Q. & Mobley, W. C. Exploring the Pathogenesis of Alzheimer Disease in Basal Forebrain Cholinergic Neurons: Converging Insights From Alternative Hypotheses. Front. Neurosci. 13, 446 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hampel, H. et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 141, 1917–1933 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giacobini, E., Cuello, A. C. & Fisher, A. Reimagining cholinergic therapy for Alzheimer’s disease. Brain 145, 2250–2275 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Breijyeh, Z. & Karaman, R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules 25, 5789 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferreira-Vieira, T. H., Guimaraes, I. M., Silva, F. R. & Ribeiro, F. M. Alzheimer’s disease: Targeting the Cholinergic System. Curr. Neuropharmacol. 14, 101–115 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bekdash, R. A. The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer’s Disease. Int. J. Mol. Sci. 22, 1273 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berry, A. S. & Harrison, T. M. New perspectives on the basal forebrain cholinergic system in Alzheimer’s disease. Neurosci. Biobehav. Rev. 150, 105192 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Majdi, A. et al. Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues. Rev. Neurosci. 31, 391–413 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Malik, R. et al. Overview of therapeutic targets in management of dementia. Biomed. Pharmacother. 152, 113168 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moreira, F. T. C., Sale, M. G. F. & Di Lorenzo, M. Towards timely Alzheimer diagnosis: A self-powered amperometric biosensor for the neurotransmitter acetylcholine. Biosens. Bioelectron. 87, 607–614 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schneider, L. S. et al. Clinical trials and late-stage drug development for Alzheimer’s disease: an appraisal from 1984 to 2014. J. Intern. Med. 275, 251–283 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morris, J. C. et al. Autosomal dominant and sporadic late onset Alzheimer’s disease share a common in vivo pathophysiology. Brain 145, 3594–3607 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Brien, R. J. & Wong, P. C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 34, 185–204 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, G. F. et al. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharm. Sin. 38, 1205–1235 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lanoiselée, H. M. et al. APP, PSEN1, and PSEN2 mutations in early-onset Alzheimer disease: A genetic screening study of familial and sporadic cases. PLoS Med. 14, e1002270 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pimplikar, S. W. et al. Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J. Neurosci. 30, 14946–14954 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. H. et al. Faulty autolysosome acidification in Alzheimer’s disease mouse models induces autophagic build-up of Abeta in neurons, yielding senile plaques. Nat. Neurosci. 25, 688–701 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, L., Zhou, R., Yang, G. & Shi, Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc. Natl Acad. Sci. USA 114, E476–E485 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ullah, R., Park, T. J., Huang, X. & Kim, M. O. Abnormal amyloid beta metabolism in systemic abnormalities and Alzheimer’s pathology: Insights and therapeutic approaches from periphery. Ageing Res. Rev. 71, 101451 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ayton, S. & Bush, A. I. beta-amyloid: The known unknowns. Ageing Res. Rev. 65, 101212 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raulin, A. C. et al. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol. Neurodegener. 17, 72 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Verghese, P. B., Castellano, J. M. & Holtzman, D. M. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol. 10, 241–252 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koutsodendris, N., Nelson, M. R., Rao, A. & Huang, Y. Apolipoprotein E and Alzheimer’s Disease: Findings, Hypotheses, and Potential Mechanisms. Annu. Rev. Pathol. 17, 73–99 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bu, G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat. Rev. Neurosci. 10, 333–344 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Serrano-Pozo, A., Das, S. & Hyman, B. T. APOE and Alzheimer’s disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 20, 68–80 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Troutwine, B. R. et al. Apolipoprotein E and Alzheimer’s disease. Acta Pharm. Sin. B 12, 496–510 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosenberg, R. N., Lambracht-Washington, D., Yu, G. & Xia, W. Genomics of Alzheimer Disease: A Review. JAMA Neurol. 73, 867–874 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicolas, G. Recent advances in Alzheimer disease genetics. Curr. Opin. Neurol. 37, 154–165 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cline, E. N., Bicca, M. A., Viola, K. L. & Klein, W. L. The Amyloid-beta Oligomer Hypothesis: Beginning of the Third Decade. J. Alzheimers Dis. 64, S567–S610 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giuffrida, M. L. et al. The monomer state of beta-amyloid: where the Alzheimer’s disease protein meets physiology. Rev. Neurosci. 21, 83–93 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kent, S. A., Spires-Jones, T. L. & Durrant, C. S. The physiological roles of tau and Abeta: implications for Alzheimer’s disease pathology and therapeutics. Acta Neuropathol. 140, 417–447 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Amyloid beta-based therapy for Alzheimer’s disease: challenges, successes and future. Signal Transduct. Target Ther. 8, 248 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cline, E. N., Bicca, M. A., Viola, K. L. & Klein, W. L. The Amyloid-β Oligomer Hypothesis: Beginning of the Third Decade. J. Alzheimers Dis. 64, S567–S610 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, H. & Wu, J. Amyloid-beta: A double agent in Alzheimer’s disease? Biomed. Pharmacother. 139, 111575 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, S. J. et al. Towards an understanding of amyloid-beta oligomers: characterization, toxicity mechanisms, and inhibitors. Chem. Soc. Rev. 46, 310–323 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Viles, J. H. Imaging Amyloid-β Membrane Interactions: Ion-Channel Pores and Lipid-Bilayer Permeability in Alzheimer’s Disease. Angew. Chem. Int. Ed. Engl. 62, e202215785 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salminen, A. et al. Inflammation in Alzheimer’s disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors. Prog. Neurobiol. 87, 181–194 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • White, J. A. et al. Differential effects of oligomeric and fibrillar amyloid-beta 1-42 on astrocyte-mediated inflammation. Neurobiol. Dis. 18, 459–465 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Demuro, A., Parker, I. & Stutzmann, G. E. Calcium signaling and amyloid toxicity in Alzheimer disease. J. Biol. Chem. 285, 12463–12468 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Norambuena, A. et al. A novel lysosome-to-mitochondria signaling pathway disrupted by amyloid-β oligomers. EMBO J. 37, e100241 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reddy, P. H. Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer’s disease. Exp. Neurol. 218, 286–292 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. et al. Insights into amyloid-beta-induced mitochondrial dysfunction in Alzheimer disease. Free Radic. Biol. Med 43, 1569–1573 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Butterfield, D. A., Swomley, A. M. & Sultana, R. Amyloid beta-peptide (1-42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid. Redox Signal 19, 823–835 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilcox, K. C., Lacor, P. N., Pitt, J. & Klein, W. L. Aβ oligomer-induced synapse degeneration in Alzheimer’s disease. Cell Mol. Neurobiol. 31, 939–948 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hardy, J. A. & Higgins, G. A. Alzheimer’s disease: the amyloid cascade hypothesis. Science 256, 184–185 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Makin, S. The amyloid hypothesis on trial. Nature 559, S4–S7 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frisoni, G. B. et al. The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat. Rev. Neurosci. 23, 53–66 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Granzotto, A. & Sensi, S. L. Once upon a time, the Amyloid Cascade Hypothesis. Ageing Res. Rev. 93, 102161 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morris, G. P., Clark, I. A. & Vissel, B. Questions concerning the role of amyloid-beta in the definition, aetiology and diagnosis of Alzheimer’s disease. Acta Neuropathol. 136, 663–689 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glass, D. J. & Arnold, S. E. Some evolutionary perspectives on Alzheimer’s disease pathogenesis and pathology. Alzheimers Dement. 8, 343–351 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roda, A. R. et al. Amyloid-beta peptide and tau protein crosstalk in Alzheimer’s disease. Neural Regen. Res. 17, 1666–1674 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. Int J. Biol. Sci. 17, 2181–2192 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bruni, A. C., Bernardi, L. & Gabelli, C. From beta amyloid to altered proteostasis in Alzheimer’s disease. Ageing Res. Rev. 64, 101126 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ossenkoppele, R., van der Kant, R. & Hansson, O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 21, 726–734 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sinsky, J., Pichlerova, K. & Hanes, J. Tau Protein Interaction Partners and Their Roles in Alzheimer’s Disease and Other Tauopathies. Int J. Mol. Sci. 22, 9207 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, Y., Liu, M. & Wang, D. The propagation mechanisms of extracellular tau in Alzheimer’s disease. J. Neurol. 269, 1164–1181 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Tang, Y., Zhang, D., Gong, X. & Zheng, J. A mechanistic survey of Alzheimer’s disease. Biophys. Chem. 281, 106735 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chong, F. P., Ng, K. Y., Koh, R. Y. & Chye, S. M. Tau Proteins and Tauopathies in Alzheimer’s Disease. Cell Mol. Neurobiol. 38, 965–980 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bjørklund, G., Aaseth, J., Dadar, M. & Chirumbolo, S. Molecular Targets in Alzheimer’s Disease. Mol. Neurobiol. 56, 7032–7044 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Almansoub, H. et al. Tau Abnormalities and the Potential Therapy in Alzheimer’s Disease. J. Alzheimers Dis. 67, 13–33 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Wu, X. L. et al. Tau-mediated Neurodegeneration and potential implications in diagnosis and treatment of Alzheimer’s Disease. Chin. Med. J. 130, 2978–2990 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, X. et al. Dendritic/Post-synaptic Tau and Early Pathology of Alzheimer’s Disease. Front Mol. Neurosci. 14, 671779 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amadoro, G., Latina, V., Corsetti, V. & Calissano, P. N-terminal tau truncation in the pathogenesis of Alzheimer’s disease (AD): Developing a novel diagnostic and therapeutic approach. Biochim Biophys. Acta Mol. Basis Dis. 1866, 165584 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Novak, M., Kabat, J. & Wischik, C. M. Molecular characterization of the minimal protease resistant tau unit of the Alzheimer’s disease paired helical filament. EMBO J. 12, 365–370 (1993).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. Z., Grundke-Iqbal, I. & Iqbal, K. Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat. Med. 2, 871–875 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, K. et al. Glycation alter the process of Tau phosphorylation to change Tau isoforms aggregation property. Biochim. Biophys. Acta 1862, 192–201 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luo, H. B. et al. SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination. Proc. Natl Acad. Sci. USA 111, 16586–16591 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ray, W. J. & Buggia-Prevot, V. Novel Targets for Alzheimer’s Disease: A View Beyond Amyloid. Annu. Rev. Med. 72, 15–28 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sintini, I. et al. Longitudinal rates of atrophy and tau accumulation differ between the visual and language variants of atypical Alzheimer’s disease. Alzheimers Dement. 19, 4396–4406 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Whitwell, J. L. et al. Imaging correlations of tau, amyloid, metabolism, and atrophy in typical and atypical Alzheimer’s disease. Alzheimers Dement. 14, 1005–1014 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Weston, P. S. J. et al. Cortical tau is associated with microstructural imaging biomarkers of neurite density and dendritic complexity in Alzheimer’s disease. Alzheimers Dement. 19, 2750–2754 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sala Frigerio, C. & De Strooper, B. Alzheimer’s Disease Mechanisms and Emerging Roads to Novel Therapeutics. Annu. Rev. Neurosci. 39, 57–79 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leng, F. & Edison, P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat. Rev. Neurol. 17, 157–172 (2021).

    Article 
    PubMed 

    Google Scholar 

  • von Bernhardi, R., Eugenín-von Bernhardi, L. & Eugenín, J. Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci. 7, 124 (2015).

  • Balducci, C. & Forloni, G. Novel targets in Alzheimer’s disease: A special focus on microglia. Pharm. Res. 130, 402–413 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hickman, S. E., Allison, E. K. & El Khoury, J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci. 28, 8354–8360 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferrari, C. & Sorbi, S. The complexity of Alzheimer’s disease: an evolving puzzle. Physiol. Rev. 101, 1047–1081 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Venegas, C. et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 552, 355–361 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Busche, M. A. & Hyman, B. T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci. 23, 1183–1193 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Španić, E., Langer Horvat, L., Hof, P. R. & Šimić, G. Role of Microglial Cells in Alzheimer’s Disease Tau Propagation. Front. Aging Neurosci. 11, 271 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sumsuzzman, D. M. et al. Microglia in Alzheimer’s Disease: A Favorable Cellular Target to Ameliorate Alzheimer’s Pathogenesis. Mediators Inflamm. 2022, 6052932 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Althafar, Z. M. Targeting Microglia in Alzheimer’s Disease: From Molecular Mechanisms to Potential Therapeutic Targets for Small Molecules. Molecules 27, 4124 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heneka, M. T. ApoE4 makes microglia trem(2)bling. Neuron 111, 142–144 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, T. et al. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Mol. Neurodegener. 15, 40 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, C. C. et al. Cell-autonomous effects of APOE4 in restricting microglial response in brain homeostasis and Alzheimer’s disease. Nat. Immunol. 24, 1854–1866 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Self, W. K. & Holtzman, D. M. Emerging diagnostics and therapeutics for Alzheimer disease. Nat. Med. 29, 2187–2199 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, W., Xiao, D., Mao, Q. & Xia, H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target Ther. 8, 267 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nouraeinejad, A. The Link Between COVID-19 and Alzheimer Disease Through Neuroinflammation. Clin. Med. Res. 21, 119–121 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bello-Corral, L. et al. Implications of gut and oral microbiota in neuroinflammatory responses in Alzheimer’s disease. Life Sci. 333, 122132 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wong-Guerra, M., Calfio, C., Maccioni, R. B. & Rojo, L. E. Revisiting the neuroinflammation hypothesis in Alzheimer’s disease: a focus on the druggability of current targets. Front. Pharm. 14, 1161850 (2023).

    Article 
    CAS 

    Google Scholar 

  • Calsolaro, V. & Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement. 12, 719–732 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lecca, D. et al. Role of chronic neuroinflammation in neuroplasticity and cognitive function: A hypothesis. Alzheimers Dement. 18, 2327–2340 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Praticò, D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharm. Sci. 29, 609–615 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Christen, Y. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 71, 621S–629S (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Markesbery, W. R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med. 23, 134–147 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miranda, S. et al. The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer’s disease. Prog. Neurobiol. 62, 633–648 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bai, R. et al. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res. Rev. 77, 101619 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Z. & Zhong, C. Oxidative stress in Alzheimer’s disease. Neurosci. Bull. 30, 271–281 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosini, M. et al. Oxidative stress in Alzheimer’s disease: are we connecting the dots? J. Med. Chem. 57, 2821–2831 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferreira, M. E. et al. Oxidative Stress in Alzheimer’s Disease: Should We Keep Trying Antioxidant Therapies? Cell Mol. Neurobiol. 35, 595–614 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poprac, P. et al. Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharm. Sci. 38, 592–607 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Perluigi, M., Di Domenico, F. & Butterfield, D. A. Oxidative damage in neurodegeneration: roles in the pathogenesis and progression of Alzheimer disease. Physiol. Rev. 104, 103–197 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roy, R. G., Mandal, P. K. & Maroon, J. C. Oxidative Stress Occurs Prior to Amyloid Aβ Plaque Formation and Tau Phosphorylation in Alzheimer’s Disease: Role of Glutathione and Metal Ions. ACS Chem. Neurosci. 14, 2944–2954 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sanders, O. D., Rajagopal, L. & Rajagopal, J. A. The oxidatively damaged DNA and amyloid-β oligomer hypothesis of Alzheimer’s disease. Free Radic. Biol. Med. 179, 403–412 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, L. L. et al. The metal ion hypothesis of Alzheimer’s disease and the anti-neuroinflammatory effect of metal chelators. Bioorg. Chem. 131, 106301 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ayton, S., Lei, P. & Bush, A. I. Metallostasis in Alzheimer’s disease. Free Radic. Biol. Med. 62, 76–89 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sensi, S. L., Granzotto, A., Siotto, M. & Squitti, R. Copper and Zinc Dysregulation in Alzheimer’s Disease. Trends Pharm. Sci. 39, 1049–1063 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • D’Acunto, C. W. et al. Metallomics for Alzheimer’s disease treatment: Use of new generation of chelators combining metal-cation binding and transport properties. Eur. J. Med. Chem. 150, 140–155 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Caraci, F., Nicoletti, F. & Copani, A. Metabotropic glutamate receptors: the potential for therapeutic applications in Alzheimer’s disease. Curr. Opin. Pharm. 38, 1–7 (2018).

    Article 
    CAS 

    Google Scholar 

  • Sharma, P. et al. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog. Neurobiol. 174, 53–89 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhong, W. et al. Pathogenesis of sporadic Alzheimer’s disease by deficiency of NMDA receptor subunit GluN3A. Alzheimers Dement. 18, 222–239 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Verma, M., Lizama, B. N. & Chu, C. T. Excitotoxicity, calcium and mitochondria: a triad in synaptic neurodegeneration. Transl. Neurodegener. 11, 3 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Granzotto, A., Canzoniero, L. M. T. & Sensi, S. L. A Neurotoxic Ménage-à-trois: Glutamate, Calcium, and Zinc in the Excitotoxic Cascade. Front. Mol. Neurosci. 13, 600089 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bi, D., Wen, L., Wu, Z. & Shen, Y. GABAergic dysfunction in excitatory and inhibitory (E/I) imbalance drives the pathogenesis of Alzheimer’s disease. Alzheimers Dement. 16, 1312–1329 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Liu, S. et al. Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment. Mol. Neurobiol. 57, 5026–5043 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bulgart, H. R., Neczypor, E. W., Wold, L. E. & Mackos, A. R. Microbial involvement in Alzheimer disease development and progression. Mol. Neurodegener. 15, 42 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • La Rosa, F. et al. The Gut-Brain Axis in Alzheimer’s Disease and Omega-3. A Critical Overview of Clinical Trials. Nutrients 10, 1267 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, X., Wang, T. & Jin, F. Alzheimer’s disease and gut microbiota. Sci. China Life Sci. 59, 1006–1023 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sochocka, M. et al. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease-a Critical Review. Mol. Neurobiol. 56, 1841–1851 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Megur, A., Baltriukienė, D., Bukelskienė, V. & Burokas, A. The Microbiota-Gut-Brain Axis and Alzheimer’s Disease: Neuroinflammation Is to Blame? Nutrients 13, 37 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ferreiro, A. L. et al. Gut microbiome composition may be an indicator of preclinical Alzheimer’s disease. Sci. Transl. Med. 15, eabo2984 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X.-W., Zhu, X.-X., Tang, D.-S. & Lu, J.-H. Targeting autophagy in Alzheimer’s disease: Animal models and mechanisms. Zool. Res. 44, 1132–1145 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aman, Y. et al. Autophagy in healthy aging and disease. Nat. Aging 1, 634–650 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eshraghi, M. et al. Enhancing autophagy in Alzheimer’s disease through drug repositioning. Pharm. Ther. 237, 108171 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365–381 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)(1). Autophagy 17, 1–382 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nedelsky, N. B., Todd, P. K. & Taylor, J. P. Autophagy and the ubiquitin-proteasome system: Collaborators in neuroprotection. Biochim Biophys. Acta 1782, 691–699 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, Z. & Cui, H. The Autophagy-Lysosomal Pathways and Their Emerging Roles in Modulating Proteostasis in Tumors. Cells 8, 4 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deng, Z. et al. Pharmacological modulation of autophagy for Alzheimer’s disease therapy: Opportunities and obstacles. Acta Pharm. Sin. B 12, 1688–1706 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iranpour, M. et al. Apoptosis, autophagy and unfolded protein response pathways in Arbovirus replication and pathogenesis. Expert Rev. Mol. Med. 18, e1 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nixon, R. A. The role of autophagy in neurodegenerative disease. Nat. Med. 19, 983–997 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, W. H. et al. Macroautophagy—a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease. J. Cell Biol. 171, 87–98 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kerr, J. S. et al. Mitophagy and Alzheimer’s Disease: Cellular and Molecular Mechanisms. Trends Neurosci. 40, 151–166 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bourdenx, M. et al. Chaperone-mediated autophagy prevents collapse of the neuronal metastable proteome. Cell 184, 2696–2714.e2625 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. et al. Microglial autophagy in Alzheimer’s disease and Parkinson’s disease. Front. Aging Neurosci. 14, 1065183 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Litwiniuk, A., Juszczak, G. R., Stankiewicz, A. M. & Urbańska, K. The role of glial autophagy in Alzheimer’s disease. Mol. Psychiatry 28, 4528–4539 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Z., Yang, X., Song, Y.-Q. & Tu, J. Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives. Ageing Res. Rev. 72, 101464 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chandra, S. & Pahan, K. Gemfibrozil, a Lipid-Lowering Drug, Lowers Amyloid Plaque Pathology and Enhances Memory in a Mouse Model of Alzheimer’s Disease via Peroxisome Proliferator-Activated Receptor α. J. Alzheimers Dis. Rep. 3, 149–168 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, R. et al. Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model. Autophagy 16, 52–69 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, Y. et al. Inflammatory signaling pathways in the treatment of Alzheimer’s disease with inhibitors, natural products and metabolites (Review). Int. J. Mol. Med. 52, 111 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thakur, S. et al. Neuroinflammation in Alzheimer’s Disease: Current Progress in Molecular Signaling and Therapeutics. Inflammation 46, 1–17 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dhapola, R. et al. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology 29, 1669–1681 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. Targeting protein kinases for the treatment of Alzheimer’s disease: Recent progress and future perspectives. Eur. J. Med. Chem. 261, 115817 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, R. et al. Whole-plant foods and their macromolecules: untapped approaches to modulate neuroinflammation in Alzheimer’s disease. Crit. Rev. Food Sci. Nutr. 63, 2388–2406 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seo, E.-J., Fischer, N. & Efferth, T. J. P. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease. Pharm. Res. 129, 262–273 (2018).

    Article 
    CAS 

    Google Scholar 

  • Morgan, M. J. & Liu, Z. G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 21, 103–115 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, K. et al. The miR-25802/KLF4/NF-κB signaling axis regulates microglia-mediated neuroinflammation in Alzheimer’s disease. Brain Behav. Immun. 118, 31–48 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blevins, H. M., Xu, Y., Biby, S. & Zhang, S. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front Aging Neurosci. 14, 879021 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naeem, A. et al. MCC950 reduces autophagy and improves cognitive function by inhibiting NLRP3-dependent neuroinflammation in a rat model of Alzheimer’s disease. Brain Behav. Immun. 116, 70–84 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Terzioglu, G. & Young-Pearse, T. L. Microglial function, INPP5D/SHIP1 signaling, and NLRP3 inflammasome activation: implications for Alzheimer’s disease. Mol. Neurodegener. 18, 89 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moonen, S. et al. Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons. Acta Neuropathol. 145, 175–195 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, C. et al. Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy. Nat. Commun. 13, 1969 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dutta, D. et al. Tau fibrils induce glial inflammation and neuropathology via TLR2 in Alzheimer’s disease-related mouse models. J. Clin. Invest. 133, e161987 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ising, C. et al. NLRP3 inflammasome activation drives tau pathology. Nature 575, 669–673 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, X. et al. Activation of innate immune cGAS-STING pathway contributes to Alzheimer’s pathogenesis in 5×FAD mice. Nat. Aging 3, 202–212 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, Y. et al. Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Mol. Neurodegener. 18, 79 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jorfi, M., Maaser-Hecker, A. & Tanzi, R. E. The neuroimmune axis of Alzheimer’s disease. Genome Med. 15, 6 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dionisio-Santos, D. A., Olschowka, J. A. & O’Banion, M. K. Exploiting microglial and peripheral immune cell crosstalk to treat Alzheimer’s disease. J. Neuroinflamm. 16, 74 (2019).

    Article 

    Google Scholar 

  • Jorfi, M. et al. Infiltrating CD8+ T cells exacerbate Alzheimer’s disease pathology in a 3D human neuroimmune axis model. Nat. Neurosci. 26, 1489–1504 (2023).

  • Unger, M. S. et al. CD8(+) T-cells infiltrate Alzheimer’s disease brains and regulate neuronal- and synapse-related gene expression in APP-PS1 transgenic mice. Brain Behav. Immun. 89, 67–86 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer’s disease mice. Aging 12, 20862–20879 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, L. et al. TREM2 receptor protects against complement-mediated synaptic loss by binding to complement C1q during neurodegeneration. Immunity 56, 1794–1808.e8 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, M., Luo, X., Wu, K. & He, X. Targeting lysosomes in human disease: from basic research to clinical applications. Signal Transduct. Target Ther. 6, 379 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, Y. B., Dammer, E. B., Ren, R. J. & Wang, G. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl. Neurodegener. 4, 18 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orr, M. E. & Oddo, S. Autophagic/lysosomal dysfunction in Alzheimer’s disease. Alzheimers Res. Ther. 5, 53 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiong, J. & Zhu, M. X. Regulation of lysosomal ion homeostasis by channels and transporters. Sci. China Life Sci. 59, 777–791 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lo, C. H. & Zeng, J. Defective lysosomal acidification: a new prognostic marker and therapeutic target for neurodegenerative diseases. Transl. Neurodegener. 12, 29 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. H. et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141, 1146–1158 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. et al. A role for presenilins in autophagy revisited: normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J. Neurosci. 32, 8633–8648 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coen, K. et al. Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J. Cell Biol. 198, 23–35 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. H. et al. Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification. Cell Rep. 12, 1430–1444 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tong, B. C. et al. Lysosomal TPCN (two pore segment channel) inhibition ameliorates beta-amyloid pathology and mitigates memory impairment in Alzheimer disease. Autophagy 18, 624–642 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Im, E. et al. Lysosomal dysfunction in Down syndrome and Alzheimer mouse models is caused by v-ATPase inhibition by Tyr(682)-phosphorylated APP βCTF. Sci. Adv. 9, eadg1925 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dietschy, J. M. & Turley, S. D. Cholesterol metabolism in the brain. Curr. Opin. Lipido 12, 105–112 (2001).

    Article 
    CAS 

    Google Scholar 

  • Ahmed, H. et al. Brain cholesterol and Alzheimer’s disease: challenges and opportunities in probe and drug development. Brain 147, 1622–1635 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Qian, L., Chai, A. B., Gelissen, I. C. & Brown, A. J. J. Eo. N. T. Balancing cholesterol in the brain: From synthesis to disposal. Explor Neuroprot. Ther. 2, 1–27 (2022).

    Article 

    Google Scholar 

  • Li, D., Zhang, J. & Liu, Q. Brain cell type-specific cholesterol metabolism and implications for learning and memory. Trends Neurosci. 45, 401–414 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feringa, F. M. & van der Kant, R. Cholesterol and Alzheimer’s Disease; From Risk Genes to Pathological Effects. Front Aging Neurosci. 13, 690372 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wolozin, B. Cholesterol and the biology of Alzheimer’s disease. Neuron 41, 7–10 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc. Natl Acad. Sci. USA 118, e2102191118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, S. et al. Chimeric cerebral organoids reveal the essentials of neuronal and astrocytic APOE4 for Alzheimer’s tau pathology. Signal Transduct. Target Ther. 7, 176 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Litvinchuk, A. et al. Amelioration of Tau and ApoE4-linked glial lipid accumulation and neurodegeneration with an LXR agonist. Neuron 112, 384–403.e8 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Dios, C. et al. Inflammasome activation under high cholesterol load triggers a protective microglial phenotype while promoting neuronal pyroptosis. Transl. Neurodegener. 12, 10 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gowda, P., Reddy, P. H. & Kumar, S. Deregulated mitochondrial microRNAs in Alzheimer’s disease: Focus on synapse and mitochondria. Ageing Res. Rev. 73, 101529 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, W. et al. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances. Mol. Neurodegener. 15, 30 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kapogiannis, D. & Mattson, M. P. Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol. 10, 187–198 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Godoy, J. A. et al. Signaling pathway cross talk in Alzheimer’s disease. Cell Commun. Signal 12, 23 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eckert, A., Schmitt, K. & Götz, J. Mitochondrial dysfunction – the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of tau and amyloid-β toxicity. Alzheimers Res. Ther. 3, 15 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lustbader, J. W. et al. ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304, 448–452 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ye, Z. et al. Aβ-binding with alcohol dehydrogenase drives Alzheimer’s disease pathogenesis: A review. Int. J. Biol. Macromol. 264, 130580 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Misrani, A., Tabassum, S. & Yang, L. Mitochondrial dysfunction and oxidative stress in Alzheimer’s disease. Front. Aging Neurosci. 13, 57 (2021).

  • De Nicolo, B., Cataldi-Stagetti, E., Diquigiovanni, C. & Bonora, E. Calcium and Reactive Oxygen Species Signaling Interplays in Cardiac Physiology and Pathologies. Antioxidants 12, 353 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bezprozvanny, I. & Mattson, M. P. Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci. 31, 454–463 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Resende, R., Ferreiro, E., Pereira, C. & Resende de Oliveira, C. Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: involvement of endoplasmic reticulum calcium release in oligomer-induced cell death. Neuroscience 155, 725–737 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Calvo-Rodriguez, M. & Bacskai, B. J. High mitochondrial calcium levels precede neuronal death in vivo in Alzheimer’s disease. Cell Stress 4, 187–190 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calvo-Rodriguez, M. et al. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer’s disease. Nat. Commun. 11, 2146 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, H. & ShiDu Yan, S. Unlocking the Door to Neuronal Woes in Alzheimer’s Disease: Aβ and Mitochondrial Permeability Transition Pore. Pharmaceuticals 3, 1936–1948 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Calvo-Rodriguez, M. & Bacskai, B. J. Mitochondria and Calcium in Alzheimer’s Disease: From Cell Signaling to Neuronal Cell Death. Trends Neurosci. 44, 136–151 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Millecamps, S. & Julien, J. P. Axonal transport deficits and neurodegenerative diseases. Nat. Rev. Neurosci. 14, 161–176 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, W., Zhao, H. & Li, Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct. Target Ther. 8, 333 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho, D. H. et al. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324, 102–105 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bossy, B. et al. S-Nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer’s disease. J. Alzheimers Dis. 20 (Suppl 2), S513–526 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flannery, P. J. & Trushina, E. Mitochondrial dynamics and transport in Alzheimer’s disease. Mol. Cell Neurosci. 98, 109–120 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pradeepkiran, J. A. & Reddy, P. H. Defective mitophagy in Alzheimer’s disease. Ageing Res. Rev. 64, 101191 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • John, A. & Reddy, P. H. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Res. Rev. 65, 101208 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Molecular mechanisms of mitophagy and its roles in neurodegenerative diseases. Pharm. Res. 163, 105240 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zeng, K. et al. Defective mitophagy and the etiopathogenesis of Alzheimer’s disease. Transl. Neurodegener. 11, 32 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mary, A., Eysert, F., Checler, F. & Chami, M. Mitophagy in Alzheimer’s disease: Molecular defects and therapeutic approaches. Mol. Psychiatry 28, 202–216 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Webber, E. K., Fivaz, M., Stutzmann, G. E. & Griffioen, G. Cytosolic calcium: Judge, jury and executioner of neurodegeneration in Alzheimer’s disease and beyond. Alzheimers Dement. 19, 3701–3717 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McDaid, J., Mustaly-Kalimi, S. & Stutzmann, G. E. Ca(2+) Dyshomeostasis Disrupts Neuronal and Synaptic Function in Alzheimer’s Disease. Cells 9, 2655 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedriali, G. et al. Regulation of Endoplasmic Reticulum-Mitochondria Ca(2+) Transfer and Its Importance for Anti-Cancer Therapies. Front. Oncol. 7, 180 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawamoto, E. M., Vivar, C. & Camandola, S. Physiology and pathology of calcium signaling in the brain. Front. Pharm. 3, 61 (2012).

    Article 

    Google Scholar 

  • Madreiter-Sokolowski, C. T., Thomas, C. & Ristow, M. Interrelation between ROS and Ca(2+) in aging and age-related diseases. Redox Biol. 36, 101678 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baracaldo-Santamaría, D. et al. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer’s Disease. Int. J. Mol. Sci. 24, 9067 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mochida, S. Calcium Channels and Calcium-Binding Proteins. Int J. Mol. Sci. 24, 14257 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mattson, M. P. Calcium and neurodegeneration. Aging Cell 6, 337–350 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bezprozvanny, I. Calcium signaling and neurodegenerative diseases. Trends Mol. Med. 15, 89–100 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giorgi, C. et al. Calcium Dynamics as a Machine for Decoding Signals. Trends Cell Biol. 28, 258–273 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smajilovic, S. & Tfelt-Hansen, J. Calcium acts as a first messenger through the calcium-sensing receptor in the cardiovascular system. Cardiovasc. Res. 75, 457–467 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ozcan, L. & Tabas, I. Calcium signalling and ER stress in insulin resistance and atherosclerosis. J. Intern. Med. 280, 457–464 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crossley, C. A., Rajani, V. & Yuan, Q. Modulation of L-type calcium channels in Alzheimer’s disease: A potential therapeutic target. Comput Struct. Biotechnol. J. 21, 11–20 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anekonda, T. S. et al. L-type voltage-gated calcium channel blockade with isradipine as a therapeutic strategy for Alzheimer’s disease. Neurobiol. Dis. 41, 62–70 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tu, S., Okamoto, S., Lipton, S. A. & Xu, H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol. Neurodegener. 9, 48 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, S. & Stern, A. M. Bioactive human Alzheimer brain soluble Aβ: pathophysiology and therapeutic opportunities. Mol. Psychiatry 27, 3182–3191 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Uddin, M. S., Yu, W. S. & Lim, L. W. Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer’s disease. Ageing Res. Rev. 70, 101417 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carvalho, E. J., Stathopulos, P. B. & Madesh, M. Regulation of Ca(2+) exchanges and signaling in mitochondria. Curr. Opin. Physiol. 17, 197–206 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. & Zhu, X. Endoplasmic reticulum-mitochondria tethering in neurodegenerative diseases. Transl. Neurodegener. 6, 21 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. & Yang, J. Mitochondria-associated membranes: A hub for neurodegenerative diseases. Biomed. Pharmacother. 149, 112890 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hedskog, L. et al. Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer’s disease and related models. Proc. Natl Acad. Sci. USA 110, 7916–7921 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Area-Gomez, E. et al. Upregulated function of mitochondria-associated ER membranes in Alzheimer disease. EMBO J. 31, 4106–4123 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, W., Jin, H. & Huang, Y. Mitochondria-associated membranes (MAMs): a potential therapeutic target for treating Alzheimer’s disease. Clin. Sci. 135, 109–126 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mustaly-Kalimi, S. et al. Protein mishandling and impaired lysosomal proteolysis generated through calcium dysregulation in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 119, e2211999119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Felice, F. G., Gonçalves, R. A. & Ferreira, S. T. Impaired insulin signalling and allostatic load in Alzheimer disease. Nat. Rev. Neurosci. 23, 215–230 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Nowell, J., Blunt, E. & Edison, P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer’s and Parkinson’s disease. Mol. Psychiatry 28, 217–229 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Correia, S. C. et al. Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res. Rev. 10, 264–273 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nowell, J., Blunt, E., Gupta, D. & Edison, P. Antidiabetic agents as a novel treatment for Alzheimer’s and Parkinson’s disease. Ageing Res. Rev. 89, 101979 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kellar, D. & Craft, S. Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol. 19, 758–766 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steen, E. et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J. Alzheimers Dis. 7, 63–80 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gabbouj, S. et al. Altered Insulin Signaling in Alzheimer’s Disease Brain – Special Emphasis on PI3K-Akt Pathway. Front. Neurosci. 13, 629 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hooper, C., Killick, R. & Lovestone, S. The GSK3 hypothesis of Alzheimer’s disease. J. Neurochem. 104, 1433–1439 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, B. & Feldman, E. L. Insulin resistance in the nervous system. Trends Endocrinol. Metab. 23, 133–141 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Querfurth, H. & Lee, H. K. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol. Neurodegener. 16, 44 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bomfim, T. R. et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Aβ oligomers. J. Clin. Invest. 122, 1339–1353 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagahara, A. H. & Tuszynski, M. H. Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat. Rev. Drug Discov. 10, 209–219 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, J., He, M. J., Widmann, A. K. & Lee, F. S. The role of neurotrophic factors in novel, rapid psychiatric treatments. Neuropsychopharmacology 49, 227–245 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pentz, R. et al. The human brain NGF metabolic pathway is impaired in the pre-clinical and clinical continuum of Alzheimers disease. Mol. Psychiatry 26, 6023–6037 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Triaca, V. et al. NGF controls APP cleavage by downregulating APP phosphorylation at Thr668: relevance for Alzheimer’s disease. Aging Cell 15, 661–672 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xhima, K. et al. Ultrasound delivery of a TrkA agonist confers neuroprotection to Alzheimer-associated pathologies. Brain 145, 2806–2822 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ding, X. W. et al. Nerve growth factor in metabolic complications and Alzheimer’s disease: Physiology and therapeutic potential. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165858 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Phillips, H. S. et al. BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7, 695–702 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiang, J. et al. Delta-secretase-cleaved Tau antagonizes TrkB neurotrophic signalings, mediating Alzheimer’s disease pathologies. Proc. Natl Acad. Sci. USA 116, 9094–9102 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Z. et al. Neurotrophic signaling deficiency exacerbates environmental risks for Alzheimer’s disease pathogenesis. Proc. Natl Acad. Sci. USA 118, e2100986118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. H. et al. Deficiency in BDNF/TrkB Neurotrophic Activity Stimulates δ-Secretase by Upregulating C/EBPβ in Alzheimer’s Disease. Cell Rep. 28, 655–669.e5 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matrone, C. et al. NGF and BDNF signaling control amyloidogenic route and Abeta production in hippocampal neurons. Proc. Natl Acad. Sci. USA 105, 13139–13144 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tong, L., Balazs, R., Thornton, P. L. & Cotman, C. W. Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. J. Neurosci. 24, 6799–6809 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. et al. Microglial repopulation reverses cognitive and synaptic deficits in an Alzheimer’s disease model by restoring BDNF signaling. Brain Behav. Immun. 113, 275–288 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alkhalifa, A. E. et al. Blood-Brain Barrier Breakdown in Alzheimer’s Disease: Mechanisms and Targeted Strategies. Int J. Mol. Sci. 24, 16288 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nehra, G., Bauer, B. & Hartz, A. M. S. Blood-brain barrier leakage in Alzheimer’s disease: From discovery to clinical relevance. Pharm. Ther. 234, 108119 (2022).

    Article 
    CAS 

    Google Scholar 

  • Chen, L. et al. Opportunities and challenges in delivering biologics for Alzheimer’s disease by low-intensity ultrasound. Adv. Drug Deliv. Rev. 189, 114517 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zlokovic, B. V. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat. Rev. Neurosci. 12, 723–738 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, A. H., Miller, S. L., Castillo-Melendez, M. & Malhotra, A. The Neurovascular Unit: Effects of Brain Insults During the Perinatal Period. Front. Neurosci. 13, 1452 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Montagne, A., Zhao, Z. & Zlokovic, B. V. Alzheimer’s disease: A matter of blood-brain barrier dysfunction? J. Exp. Med. 214, 3151–3169 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pan, Y. & Nicolazzo, J. A. Impact of aging, Alzheimer’s disease and Parkinson’s disease on the blood-brain barrier transport of therapeutics. Adv. Drug Deliv. Rev. 135, 62–74 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zenaro, E., Piacentino, G. & Constantin, G. The blood-brain barrier in Alzheimer’s disease. Neurobiol. Dis. 107, 41–56 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Erickson, M. A. & Banks, W. A. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer’s disease. J. Cereb. Blood Flow. Metab. 33, 1500–1513, (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Winkler, E. A. et al. GLUT1 reductions exacerbate Alzheimer’s disease vasculo-neuronal dysfunction and degeneration. Nat. Neurosci. 18, 521–530 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jack, C. R. et al. NIA‐AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14, 535–562 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Mahaman, Y. A. R. et al. Biomarkers used in Alzheimer’s disease diagnosis, treatment, and prevention. Ageing Res. Rev. 74, 101544 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scheltens, P. et al. Alzheimer’s disease. Lancet 397, 1577–1590 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Klyucherev, T. O. et al. Advances in the development of new biomarkers for Alzheimer’s disease. Transl. Neurodegener. 11, 25 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown RK, B. N.Wong, K. K., Minoshima, S. & Frey, K. A. Brain PET in suspected dementia: patterns of altered FDG metabolism. Radiographics 34, 684–701 (2014).

    Article 
    PubMed 

    Google Scholar 

  • van Oostveen, W. M. & de Lange, E. C. M. Imaging Techniques in Alzheimer’s Disease: A Review of Applications in Early Diagnosis and Longitudinal Monitoring. Int J. Mol. Sci. 22, 2110 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, E. et al. Diagnostic biomarkers in Alzheimer’s disease. Biomark. Neuropsychiatry 5, 100041 (2021).

    Article 

    Google Scholar 

  • Olsson, B. et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 15, 673–684 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dubois, B. et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 13, 614–629 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Bucci, M., Chiotis, K. & Nordberg, A. Alzheimer’s disease profiled by fluid and imaging markers: tau PET best predicts cognitive decline. Mol. Psychiatry 26, 5888–5898 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jia, J. et al. Biomarker Changes during 20 Years Preceding Alzheimer’s Disease. N. Engl. J. Med. 390, 712–722 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, A. et al. Soluble TREM2 levels associate with conversion from mild cognitive impairment to Alzheimer’s disease. J. Clin. Invest. 132, e158708 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zetterberg, H. Biofluid‐based biomarkers for Alzheimer’s disease–related pathologies: An update and synthesis of the literature. Alzheimers Dement. 18, 1687–1693 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Carter, S. F. et al. Astrocyte Biomarkers in Alzheimer’s Disease. Trends Mol. Med. 25, 77–95 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kumar, A. et al. Amyloid and Tau in Alzheimer’s Disease: Biomarkers or Molecular Targets for Therapy? Are We Shooting the Messenger? Am. J. Psychiatry 178, 1014–1025 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Nation, D. A. et al. Blood–brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat. Med. 25, 270–276 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, M. W. et al. Dysregulation of lipids in Alzheimer’s disease and their role as potential biomarkers. Alzheimers Dement. 13, 810–827 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Paciotti, S. et al. Potential diagnostic value of CSF metabolism-related proteins across the Alzheimer’s disease continuum. Alzheimers Res. Ther. 15, 124 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuyama, K. et al. Extracellular vesicle proteome unveils cathepsin B connection to Alzheimer’s disease pathogenesis. Brain 147, 627–636 (2023).

    Article 
    PubMed Central 

    Google Scholar 

  • Chatterjee, M. et al. C1q is increased in cerebrospinal fluid‐derived extracellular vesicles in Alzheimer’s disease: A multi‐cohort proteomics and immuno‐assay validation study. Alzheimers Dement. 19, 4828–4840 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blennow, K. et al. The potential clinical value of plasma biomarkers in Alzheimer’s disease. Alzheimers Dement. 19, 5805–5816 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rani, S. et al. Advanced Overview of Biomarkers and Techniques for Early Diagnosis of Alzheimer’s Disease. Cell Mol. Neurobiol. 43, 2491–2523 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Hu, S., Yang, C. & Luo, H. Current trends in blood biomarker detection and imaging for Alzheimer’s disease. Biosens. Bioelectron. 210, 114278 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Teunissen, C. E. et al. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 21, 66–77 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blennow, K. & Zetterberg, H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J. Intern. Med. 284, 643–663 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, Y. et al. A blood-based multi-pathway biomarker assay for early detection and staging of Alzheimer’s disease across ethnic groups. Alzheimers Dement. 20, 2000–2015 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Valenza, M. & Scuderi, C. How useful are biomarkers for the diagnosis of Alzheimer’s disease and especially for its therapy? Neural Regen. Res. 17, 2205–2207 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schindler, S. E. & Karikari, T. K. Comorbidities confound Alzheimer’s blood tests. Nat. Med. 28, 1349–1351 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Bryant, S. E., Petersen, M., Hall, J. & Johnson, L. A. Medical comorbidities and ethnicity impact plasma Alzheimer’s disease biomarkers: Important considerations for clinical trials and practice. Alzheimers Dement. 19, 36–43 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Cousins, K. A. Q. et al. CSF Biomarkers of Alzheimer Disease in Patients With Concomitant α-Synuclein Pathology. Neurology 99, e2303–e2312 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mielke, M. M. et al. Performance of plasma phosphorylated tau 181 and 217 in the community. Nat. Med. 28, 1398–1405 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galimberti, D. & Scarpini, E. Old and new acetylcholinesterase inhibitors for Alzheimer’s disease. Expert Opin. Investig. Drugs 25, 1181–1187 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Masters, C. L. et al. Alzheimer’s disease. Nat. Rev. Dis. Prim. 1, 15056 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Akıncıoğlu, H. & Gülçin, İ. Potent Acetylcholinesterase Inhibitors: Potential Drugs for Alzheimer’s Disease. Mini Rev. Med. Chem. 20, 703–715 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Simunkova, M. et al. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch. Toxicol. 93, 2491–2513 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thompson, S., Lanctôt, K. L. & Herrmann, N. The benefits and risks associated with cholinesterase inhibitor therapy in Alzheimer’s disease. Expert Opin. Drug Saf. 3, 425–440 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nunes, D., Loureiro, J. A. & Pereira, M. C. Drug Delivery Systems as a Strategy to Improve the Efficacy of FDA-Approved Alzheimer’s. Drugs Pharm. 14, 2296 (2022).

    CAS 

    Google Scholar 

  • Kabir, M. T. et al. Combination Drug Therapy for the Management of Alzheimer’s Disease. Int. J. Mol. Sci. 21, 3272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joe, E. & Ringman, J. M. Cognitive symptoms of Alzheimer’s disease: clinical management and prevention. BMJ 367, l6217 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Larkin, H. D. First Donepezil Transdermal Patch Approved for Alzheimer Disease. JAMA 327, 1642 (2022).

    PubMed 

    Google Scholar 

  • Tariot, P. N., Braeckman, R. & Oh, C. Comparison of Steady-State Pharmacokinetics of Donepezil Transdermal Delivery System with Oral Donepezil. J. Alzheimers Dis. 90, 161–172 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taléns-Visconti, R. et al. Intranasal Drug Administration in Alzheimer-Type Dementia: Towards Clinical Applications. Pharmaceutics 15, 1399 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Georgieva, D., Nikolova, D., Vassileva, E. & Kostova, B. Chitosan-Based Nanoparticles for Targeted Nasal Galantamine Delivery as a Promising Tool in Alzheimer’s Disease Therapy. Pharmaceutics 15, 829 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amat-Ur-Rasool, H., Ahmed, M., Hasnain, S. & Carter, W. G. Anti-Cholinesterase Combination Drug Therapy as a Potential Treatment for Alzheimer’s Disease. Brain Sci. 11, 184 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miculas, D. C. et al. Pharmacotherapy Evolution in Alzheimer’s Disease: Current Framework and Relevant Directions. Cells 12, 131 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pardo-Moreno, T. et al. Therapeutic Approach to Alzheimer’s Disease: Current Treatments and New Perspectives. Pharmaceutics 14, 1117 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, L. K., Chao, S. P. & Hu, C. J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci. 27, 18 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cummings, J. & Fox, N. Defining Disease Modifying Therapy for Alzheimer’s Disease. J. Prev. Alzheimers Dis. 4, 109–115 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeo-Teh, N. S. L. & Tang, B. L. A Review of Scientific Ethics Issues Associated with the Recently Approved Drugs for Alzheimer’s Disease. Sci. Eng. Ethics 29, 2 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 29, 787–803 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bosch, M. E. et al. Sodium oligomannate alters gut microbiota, reduces cerebral amyloidosis and reactive microglia in a sex-specific manner. Mol. Neurodegener. 19, 18 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, K. Y. & Howard, R. Can we learn lessons from the FDA’s approval of aducanumab? Nat. Rev. Neurol. 17, 715–722 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Lythgoe, M. P., Jenei, K. & Prasad, V. Regulatory decisions diverge over aducanumab for Alzheimer’s disease. BMJ 376, e069780 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 537, 50–56 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karran, E. & De Strooper, B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat. Rev. Drug Discov. 21, 306–318 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jucker, M. & Walker, L. C. Alzheimer’s disease: From immunotherapy to immunoprevention. Cell 186, 4260–4270 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lannfelt, L. et al. BAN2401 shows stronger binding to soluble aggregated amyloid-beta species than aducanumab. Alzheimers Dement. 15, P1601–P1602 (2019).

    Article 

    Google Scholar 

  • Golde, T. E. & Levey, A. I. Immunotherapies for Alzheimer’s disease. Science 382, 1242–1244 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boxer, A. L. & Sperling, R. Accelerating Alzheimer’s therapeutic development: The past and future of clinical trials. Cell 186, 4757–4772 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Couzin-Frankel, J. Side effects loom over Alzheimer’s drugs. Science 381, 466–467 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, Y., Yu, F., Lyu, Y. & Lu, X. Promising candidates from drug clinical trials: Implications for clinical treatment of Alzheimer’s disease in China. Front. Neurol. 13, 1034243 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ballard, C. Brexpiprazole for the Treatment of Agitation and Aggression in Alzheimer Disease. JAMA Neurol. 80, 1272–1273 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Almeida, O. P. & Ford, A. H. Are We Getting Better at Managing Agitation in Dementia? Am. J. Geriatr. Psychiatry 28, 401–403 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Bauzon, J., Lee, G. & Cummings, J. Repurposed agents in the Alzheimer’s disease drug development pipeline. Alzheimers Res. Ther. 12, 98 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grabowska, M. E. et al. Drug repurposing for Alzheimer’s disease from 2012-2022-a 10-year literature review. Front. Pharm. 14, 1257700 (2023).

    Article 
    CAS 

    Google Scholar 

  • Ballard, C. et al. Drug repositioning and repurposing for Alzheimer disease. Nat. Rev. Neurol. 16, 661–673 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zang, C. et al. High-throughput target trial emulation for Alzheimer’s disease drug repurposing with real-world data. Nat. Commun. 14, 8180 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez, S. et al. Machine learning identifies candidates for drug repurposing in Alzheimer’s disease. Nat. Commun. 12, 1033 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsuji, S. et al. Artificial intelligence-based computational framework for drug-target prioritization and inference of novel repositionable drugs for Alzheimer’s disease. Alzheimers Res. Ther. 13, 92 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cummings, J. et al. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement. 9, e12385 (2023).

    Google Scholar 

  • van Bokhoven, P. et al. The Alzheimer’s disease drug development landscape. Alzheimers Res. Ther. 13, 186 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elmaleh, D. R. et al. Developing Effective Alzheimer’s Disease Therapies: Clinical Experience and Future Directions. J. Alzheimers Dis. 71, 715–732 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, F. et al. New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharm. Sin. 42, 1382–1389 (2021).

    Article 
    CAS 

    Google Scholar 

  • Doody, R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med. 369, 341–350 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blennow, K., Zetterberg, H., Haass, C. & Finucane, T. Semagacestat’s fall: where next for AD therapies? Nat. Med. 19, 1214–1215 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Yang, G. et al. Structural basis of γ-secretase inhibition and modulation by small molecule drugs. Cell 184, 521–533.e14 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gupta, V. B., Gupta, V. K. & Martins, R. Semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med. 369, 1660–1661, (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coric, V. et al. Targeting Prodromal Alzheimer Disease With Avagacestat: A Randomized Clinical Trial. JAMA Neurol. 72, 1324–1333 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Gravitz, L. Drugs: a tangled web of targets. Nature 475, S9–11 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hrabinova, M. et al. Is It the Twilight of BACE1 Inhibitors? Curr. Neuropharmacol. 19, 61–77 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neumann, U. et al. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer’s disease. EMBO Mol. Med. 10, e9316 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jeremic, D., Jiménez-Díaz, L. & Navarro-López, J. D. Past, present and future of therapeutic strategies against amyloid-β peptides in Alzheimer’s disease: a systematic review. Ageing Res. Rev. 72, 101496 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walsh, T. et al. Outreach, Screening, and Randomization of APOE ε4 Carriers into an Alzheimer’s Prevention Trial: A global Perspective from the API Generation Program. J. Prev. Alzheimers Dis. 10, 453–463 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imbimbo, B. P. & Watling, M. Investigational BACE inhibitors for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs 28, 967–975 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Navarro-Gómez, N., Valdes-Gonzalez, M., Garrido-Suárez, B. B. & Garrido, G. Pharmacological Inventions for Alzheimer Treatment in the United States of America: A Revision Patent from 2010–2020. J. Prev. Alzheimers Dis. 10, 50–68 (2023).

    PubMed 

    Google Scholar 

  • Tolar, M. et al. Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimers Res. Ther. 12, 95 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tolar, M., Abushakra, S. & Sabbagh, M. The path forward in Alzheimer’s disease therapeutics: Reevaluating the amyloid cascade hypothesis. Alzheimers Dement. 16, 1553–1560 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Hoffmann, T. et al. Combination of the Glutaminyl Cyclase Inhibitor PQ912 (Varoglutamstat) and the Murine Monoclonal Antibody PBD-C06 (m6) Shows Additive Effects on Brain Aβ Pathology in Transgenic Mice. Int J. Mol. Sci. 22, 11791 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Manh, N. et al. Discovery of potent indazole-based human glutaminyl cyclase (QC) inhibitors as Anti-Alzheimer’s disease agents. Eur. J. Med. Chem. 244, 114837 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Scheltens, P. et al. Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer’s disease: results of a randomized, double-blind, placebo-controlled phase 2a study. Alzheimers Res. Ther. 10, 107 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vijverberg, E. G. B. et al. Rationale and study design of a randomized, placebo-controlled, double-blind phase 2b trial to evaluate efficacy, safety, and tolerability of an oral glutaminyl cyclase inhibitor varoglutamstat (PQ912) in study participants with MCI and mild AD-VIVIAD. Alzheimers Res. Ther. 13, 142 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The, L. Alzheimer’s disease: expedition into the unknown. Lancet. 388, 2713 (2016).

  • Sacks, C. A., Avorn, J. & Kesselheim, A. S. The Failure of Solanezumab – How the FDA Saved Taxpayers Billions. N. Engl. J. Med. 376, 1706–1708 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Karran, E. & Hardy, J. Antiamyloid therapy for Alzheimer’s disease–are we on the right road? N. Engl. J. Med. 370, 377–378 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Honig, L. S. et al. Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease. N. Engl. J. Med. 378, 321–330 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bateman, R. J. et al. Gantenerumab: an anti-amyloid monoclonal antibody with potential disease-modifying effects in early Alzheimer’s disease. Alzheimers Res. Ther. 14, 178 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bateman, R. J. et al. Two Phase 3 Trials of Gantenerumab in Early Alzheimer’s Disease. N. Engl. J. Med. 389, 1862–1876 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schneider, L. S. What the Gantenerumab Trials Teach Us about Alzheimer’s Treatment. N. Engl. J. Med. 389, 1918–1920 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Basheer, N. et al. Does modulation of tau hyperphosphorylation represent a reasonable therapeutic strategy for Alzheimer’s disease? From preclinical studies to the clinical trials. Mol. Psychiatry 28, 2197–2214 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, Y. et al. Design, synthesis and bioevaluation of 1,2,4-thiadiazolidine-3,5-dione derivatives as potential GSK-3beta inhibitors for the treatment of Alzheimer’s disease. Bioorg. Chem. 134, 106446 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gulisano, W. et al. Role of Amyloid-β and Tau Proteins in Alzheimer’s Disease: Confuting the Amyloid Cascade. J. Alzheimers Dis. 64, S611–S631 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilcock, G. K. et al. Potential of Low Dose Leuco-Methylthioninium Bis(Hydromethanesulphonate) (LMTM) Monotherapy for Treatment of Mild Alzheimer’s Disease: Cohort Analysis as Modified Primary Outcome in a Phase III Clinical Trial. J. Alzheimers Dis. 61, 435–457 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gauthier, S. et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer’s disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial. Lancet 388, 2873–2884 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wischik, C. M. et al. Oral Tau Aggregation Inhibitor for Alzheimer’s Disease: Design, Progress and Basis for Selection of the 16 mg/day Dose in a Phase 3, Randomized, Placebo-Controlled Trial of Hydromethylthionine Mesylate. J. Prev. Alzheimers Dis. 9, 780–790 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Panza, F. et al. Clinical development of passive tau-based immunotherapeutics for treating primary and secondary tauopathies. Expert Opin. Investig. Drugs 32, 625–634 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roberts, M. et al. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer’s disease. Acta Neuropathol. Commun. 8, 13 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Novak, P. et al. ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer’s disease. Nat. Aging 1, 521–534 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Reading, C. L., Ahlem, C. N. & Murphy, M. F. NM101 Phase III study of NE3107 in Alzheimer’s disease: rationale, design and therapeutic modulation of neuroinflammation and insulin resistance. Neurodegener. Dis. Manag. 11, 289–298 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Lozupone, M. et al. Anti-amyloid-β protein agents for the treatment of Alzheimer’s disease: an update on emerging drugs. Expert Opin. Emerg. Drugs 25, 319–335 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, S. et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. J. Exp. Med. 217, e20200785 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ettcheto, M. et al. Masitinib for the treatment of Alzheimer’s disease. Neurodegener. Dis. Manag. 11, 263–276 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Maheshwari, S. et al. Navigating the dementia landscape: Biomarkers and emerging therapies. Ageing Res. Rev. 94, 102193 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lawlor, B. et al. Nilvadipine in mild to moderate Alzheimer disease: A randomised controlled trial. PLoS Med. 15, e1002660 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Padhi, D. & Govindaraju, T. Mechanistic Insights for Drug Repurposing and the Design of Hybrid Drugs for Alzheimer’s Disease. J. Med. Chem. 65, 7088–7105 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cacabelos, R. What have we learnt from past failures in Alzheimer’s disease drug discovery? Expert Opin. Drug Discov. 17, 309–323 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Imbimbo, B. P., Watling, M., Imbimbo, C. & Nisticò, R. Plasma ATN(I) classification and precision pharmacology in Alzheimer’s disease. Alzheimers Dement. 19, 4729–4734 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tatulian, S. A. Challenges and hopes for Alzheimer’s disease. Drug Discov. Today 27, 1027–1043 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Goldman, D. P., Fillit, H. & Neumann, P. Accelerating Alzheimer’s disease drug innovations from the research pipeline to patients. Alzheimers Dement. 14, 833–836 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Moutinho, S. The long road to a cure for Alzheimer’s disease is paved with failures. Nat. Med. 28, 2228–2231 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, L. et al. Advance of sporadic Alzheimer’s disease animal models. Med. Res. Rev. 40, 431–458 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xia, Z. D. et al. Pathogenesis, Animal Models, and Drug Discovery of Alzheimer’s Disease. J. Alzheimers Dis. 94, 1265–1301 (2023).

    Article 
    PubMed 

    Google Scholar 

  • LaFerla, F. M. & Green, K. N. Animal models of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006320 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Z. Y. & Zhang, Y. Animal models of Alzheimer’s disease: Applications, evaluation, and perspectives. Zool. Res. 43, 1026–1040 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, Y. & Li, H. Structure-Based Inhibitor Discovery of Class I Histone Deacetylases (HDACs). Int J. Mol. Sci. 21, 8828 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, C. S. et al. Selective inhibitors of bromodomain BD1 and BD2 of BET proteins modulate radiation-induced profibrotic fibroblast responses. Int. J. Cancer 151, 275–286 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yu, J., Zhang, C. & Song, C. Pan- and isoform-specific inhibition of Hsp90: Design strategy and recent advances. Eur. J. Med. Chem. 238, 114516 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghiboub, M. et al. Selective Targeting of Epigenetic Readers and Histone Deacetylases in Autoimmune and Inflammatory Diseases: Recent Advances and Future Perspectives. J. Pers. Med. 11, 336 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, X. L. et al. Stereoisomers of Schisandrin B Are Potent ATP Competitive GSK-3beta Inhibitors with Neuroprotective Effects against Alzheimer’s Disease: Stereochemistry and Biological Activity. ACS Chem. Neurosci. 10, 996–1007 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rippin, I. et al. Discovery and Design of Novel Small Molecule GSK-3 Inhibitors Targeting the Substrate Binding Site. Int J. Mol. Sci. 21, 8709 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beurel, E., Grieco, S. F. & Jope, R. S. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharm. Ther. 148, 114–131 (2015).

    Article 
    CAS 

    Google Scholar 

  • Liang, Z. & Li, Q. X. Discovery of Selective, Substrate-Competitive, and Passive Membrane Permeable Glycogen Synthase Kinase-3beta Inhibitors: Synthesis, Biological Evaluation, and Molecular Modeling of New C-Glycosylflavones. ACS Chem. Neurosci. 9, 1166–1183 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Silva-Garcia, O. et al. GSK3alpha: An Important Paralog in Neurodegenerative Disorders and Cancer. Biomolecules 10, 1683 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amaral, B. et al. Elucidation of the GSK3alpha Structure Informs the Design of Novel, Paralog-Selective Inhibitors. ACS Chem. Neurosci. 14, 1080–1094 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei, J. et al. Development of inhibitors targeting glycogen synthase kinase-3β for human diseases: Strategies to improve selectivity. Eur. J. Med. Chem. 236, 114301 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bernard-Gauthier, V. et al. Structural Basis for Achieving GSK-3beta Inhibition with High Potency, Selectivity, and Brain Exposure for Positron Emission Tomography Imaging and Drug Discovery. J. Med. Chem. 62, 9600–9617 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y. W. et al. Identification of selective dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) inhibitors and their effects on tau and microtubule. Int J. Biol. Macromol. 259, 129074 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fernandez Bessone, I. et al. DYRK1A regulates the bidirectional axonal transport of APP in human-derived neurons. J. Neurosci. 42, 6344–6358 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Deboever, E., Fistrovich, A., Hulme, C. & Dunckley, T. The Omnipresence of DYRK1A in Human Diseases. Int J. Mol. Sci. 23, 9355 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miyazaki, Y. et al. Structure-activity relationship for the folding intermediate-selective inhibition of DYRK1A. Eur. J. Med. Chem. 227, 113948 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bieliauskas, A. V. & Pflum, M. K. Isoform-selective histone deacetylase inhibitors. Chem. Soc. Rev. 37, 1402–1413 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shukla, S. & Tekwani, B. L. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front. Pharm. 11, 537 (2020).

    Article 
    CAS 

    Google Scholar 

  • Simões-Pires, C. et al. HDAC6 as a target for neurodegenerative diseases: what makes it different from the other HDACs? Mol. Neurodegener. 8, 7 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Q. Q., Zhang, W. J. & Chang, S. HDAC6 inhibition: a significant potential regulator and therapeutic option to translate into clinical practice in renal transplantation. Front. Immunol. 14, 1168848 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vögerl, K. et al. Synthesis and Biological Investigation of Phenothiazine-Based Benzhydroxamic Acids as Selective Histone Deacetylase 6 Inhibitors. J. Med. Chem. 62, 1138–1166 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. Inhibition of Histone Deacetylase 6 (HDAC6) as a therapeutic strategy for Alzheimer’s disease: A review (2010-2020). Eur. J. Med. Chem. 226, 113874 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. X., Wan, R. Z. & Liu, Z. P. Recent advances in the discovery of potent and selective HDAC6 inhibitors. Eur. J. Med. Chem. 143, 1406–1418 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. X. et al. Synthesis and biological evaluation of selective histone deacetylase 6 inhibitors as multifunctional agents against Alzheimer’s disease. Eur. J. Med. Chem. 225, 113821 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, T. et al. Targeting histone deacetylases for cancer therapy: Trends and challenges. Acta Pharm. Sin. B 13, 2425–2463 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, F. et al. Melatonin- and Ferulic Acid-Based HDAC6 Selective Inhibitors Exhibit Pronounced Immunomodulatory Effects In Vitro and Neuroprotective Effects in a Pharmacological Alzheimer’s Disease Mouse Model. J. Med. Chem. 64, 3794–3812 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, H. Y. et al. 5-Aroylindoles Act as Selective Histone Deacetylase 6 Inhibitors Ameliorating Alzheimer’s Disease Phenotypes. J. Med. Chem. 61, 7087–7102 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cescon, E. et al. Scaffold Repurposing of in-House Chemical Library toward the Identification of New Casein Kinase 1 delta Inhibitors. ACS Med. Chem. Lett. 11, 1168–1174 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cho, H. & Hah, J.-M. J. B. A perspective on the development of c-jun N-terminal kinase inhibitors as therapeutics for alzheimer’s disease: Investigating structure through docking studies. Biomedicines 9, 1431 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, M. H. et al. Syntheses and biological evaluation of 1-heteroaryl-2-aryl-1H-benzimidazole derivatives as c-Jun N-terminal kinase inhibitors with neuroprotective effects. Bioorg. Med. Chem. 21, 2271–2285 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jang, M. et al. Discovery of 1-Pyrimidinyl-2-Aryl-4,6-Dihydropyrrolo [3,4-d]Imidazole-5(1H)-Carboxamide as a Novel JNK Inhibitor. Int J. Mol. Sci. 21, 1698 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jun, J. et al. Discovery of novel imidazole chemotypes as isoform-selective JNK3 inhibitors for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 245, 114894 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guenette, R. G. et al. Target and tissue selectivity of PROTAC degraders. Chem. Soc. Rev. 51, 5740–5756 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sutanto, F., Konstantinidou, M. & Dömling, A. Covalent inhibitors: a rational approach to drug discovery. RSC Med. Chem. 11, 876–884 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cescon, E. et al. Scaffold Repurposing of in-House Chemical Library toward the Identification of New Casein Kinase 1 δ Inhibitors. ACS Med. Chem. Lett. 11, 1168–1174 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maramai, S., Benchekroun, M., Gabr, M. T. & Yahiaoui, S. Multitarget Therapeutic Strategies for Alzheimer’s Disease: Review on Emerging Target Combinations. Biomed. Res. Int. 2020, 5120230 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, D. et al. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer’s disease. J. Enzym. Inhib. Med. Chem. 38, 2270781 (2023).

    Article 

    Google Scholar 

  • Raghavendra, N. M. et al. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur. J. Med. Chem. 143, 1277–1300 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ferreira, J. P. S. et al. Dual-target compounds for Alzheimer’s disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur. J. Med. Chem. 221, 113492 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miao, S. et al. Aaptamine – a dual acetyl – and butyrylcholinesterase inhibitor as potential anti-Alzheimer’s disease agent. Pharm. Biol. 60, 1502–1510 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Makhaeva, G. F. et al. New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer’s Disease Treatment. Molecules 25, 3915 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bondzic, A. M. et al. Aminoalcoholate-driven tetracopper(II) cores as dual acetyl and butyrylcholinesterase inhibitors: Experimental and theoretical elucidation of mechanism of action. J. Inorg. Biochem. 205, 110990 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Viayna, E. et al. Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity that Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice. J. Med. Chem. 64, 812–839 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, Q. et al. Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg. Chem. 81, 512–528 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Design, Synthesis, and Biological Evaluation of Novel Chromanone Derivatives as Multifunctional Agents for the Treatment of Alzheimer’s Disease. ACS Chem. Neurosci. 13, 3488–3501 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schneider, L. S. et al. Low-dose ladostigil for mild cognitive impairment: A phase 2 placebo-controlled clinical trial. Neurology 93, e1474–e1484 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stern, N. et al. Dual Inhibitors of AChE and BACE-1 for Reducing Abeta in Alzheimer’s Disease: From In Silico to In Vivo. Int. J. Mol. Sci. 23, 13098 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fronza, M. G., Alves, D., Praticò, D. & Savegnago, L. The neurobiology and therapeutic potential of multi-targeting β-secretase, glycogen synthase kinase 3β and acetylcholinesterase in Alzheimer’s disease. Ageing Res. Rev. 90, 102033 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, X. Y. et al. Dual GSK-3beta/AChE Inhibitors as a New Strategy for Multitargeting Anti-Alzheimer’s Disease Drug Discovery. ACS Med. Chem. Lett. 9, 171–176 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, X. et al. Rational design and biological evaluation of a new class of thiazolopyridyl tetrahydroacridines as cholinesterase and GSK-3 dual inhibitors for Alzheimer’s disease. Eur. J. Med. Chem. 207, 112751 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Swetha, R. et al. Combined ligand-based and structure-based design of PDE 9A inhibitors against Alzheimer’s disease. Mol. Divers. 26, 2877–2892 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sheng, J. et al. Inhibition of phosphodiesterase: A novel therapeutic target for the treatment of mild cognitive impairment and Alzheimer’s disease. Front. Aging Neurosci. 14, 1019187 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. et al. Discovery of novel 2,3-dihydro-1H-inden-1-ones as dual PDE4/AChE inhibitors with more potency against neuroinflammation for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 238, 114503 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy. J. Hematol. Oncol. 15, 89 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jakubik, J. & El-Fakahany, E. E. Current Advances in Allosteric Modulation of Muscarinic Receptors. Biomolecules 10, 325 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, X. et al. Recent advances in targeting the “undruggable” proteins: from drug discovery to clinical trials. Signal Transduct. Target Ther. 8, 335 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dwomoh, L., Tejeda, G. S. & Tobin, A. B. Targeting the M1 muscarinic acetylcholine receptor in Alzheimer’s disease. Neuronal. Signal 6, NS20210004 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van der Westhuizen, E. T. et al. Fine Tuning Muscarinic Acetylcholine Receptor Signaling Through Allostery and Bias. Front. Pharm. 11, 606656 (2020).

    Article 

    Google Scholar 

  • Luo, J. E. & Li, Y. M. Turning the tide on Alzheimer’s disease: modulation of γ-secretase. Cell Biosci. 12, 2 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Strooper, B. & Karran, E. New precision medicine avenues to the prevention of Alzheimer’s disease from insights into the structure and function of γ-secretases. EMBO J. 43, 887–903 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rynearson, K. D. et al. Preclinical validation of a potent γ-secretase modulator for Alzheimer’s disease prevention. J. Exp. Med. 218, e20202560 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hollingsworth, S. A. et al. Cryptic pocket formation underlies allosteric modulator selectivity at muscarinic GPCRs. Nat. Commun. 10, 3289 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Terry, A. V. Jr., Jones, K. & Bertrand, D. Nicotinic acetylcholine receptors in neurological and psychiatric diseases. Pharm. Res. 191, 106764 (2023).

    Article 
    CAS 

    Google Scholar 

  • Letsinger, A. C., Gu, Z. & Yakel, J. L. α7 nicotinic acetylcholine receptors in the hippocampal circuit: taming complexity. Trends Neurosci. 45, 145–157 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sinha, N. et al. Discovery of Novel, Potent, Brain-Permeable, and Orally Efficacious Positive Allosteric Modulator of α7 Nicotinic Acetylcholine Receptor [4-(5-(4-Chlorophenyl)-4-methyl-2-propionylthiophen-3-yl)benzenesulfonamide]: Structure-Activity Relationship and Preclinical Characterization. J. Med. Chem. 63, 944–960 (2020).

  • Kurimoto, E. et al. An Approach to Discovering Novel Muscarinic M(1) Receptor Positive Allosteric Modulators with Potent Cognitive Improvement and Minimized Gastrointestinal Dysfunction. J. Pharm. Exp. Ther. 364, 28–37 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jörg, M. et al. 6-Phenylpyrimidin-4-ones as Positive Allosteric Modulators at the M(1) mAChR: The Determinants of Allosteric Activity. ACS Chem. Neurosci. 10, 1099–1114 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Dallagnol, J. C. C. et al. Synthesis and Pharmacological Evaluation of Heterocyclic Carboxamides: Positive Allosteric Modulators of the M1 Muscarinic Acetylcholine Receptor with Weak Agonist Activity and Diverse Modulatory Profiles. J. Med. Chem. 61, 2875–2894 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Querfurth, H. et al. A PDK-1 allosteric agonist neutralizes insulin signaling derangements and beta-amyloid toxicity in neuronal cells and in vitro. PLoS One 17, e0261696 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dahlstrom, M. et al. Identification of Novel Positive Allosteric Modulators of Neurotrophin Receptors for the Treatment of Cognitive Dysfunction. Cells 10, 1871 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Önnestam, K. et al. Safety, Tolerability, Pharmacokinetics and Quantitative Electroencephalography Assessment of ACD856, a Novel Positive Allosteric Modulator of Trk-Receptors Following Multiple Doses in Healthy Subjects. J. Prev. Alzheimers Dis. 10, 778–789 (2023).

    PubMed 

    Google Scholar 

  • Chen, L. et al. Advances in RIPK1 kinase inhibitors. Front. Pharm. 13, 976435 (2022).

    Article 
    CAS 

    Google Scholar 

  • Geoffroy, C., Paoletti, P. & Mony, L. Positive allosteric modulation of NMDA receptors: mechanisms, physiological impact and therapeutic potential. J. Physiol. 600, 233–259 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Balboni, B. et al. GSK-3β Allosteric Inhibition: A Dead End or a New Pharmacological Frontier? Int. J. Mol. Sci. 24, 7541 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Christopoulos, A. Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat. Rev. Drug Discov. 1, 198–210 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mannes, M., Martin, C., Menet, C. & Ballet, S. Wandering beyond small molecules: peptides as allosteric protein modulators. Trends Pharm. Sci. 43, 406–423 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Coughlin, Q. et al. Allosteric Modalities for Membrane-Bound Receptors: Insights from Drug Hunting for Brain Diseases. J. Med. Chem. 62, 5979–6002 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zheng, L. et al. Development of covalent inhibitors: Principle, design, and application in cancer. MedComm. Oncol. 2, e56 (2023).

    Article 

    Google Scholar 

  • Cully, M. Novel chemistry for covalent inhibitors. Nat. Rev. Drug Discov. 19, 754 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abdeldayem, A. et al. Advances in covalent kinase inhibitors. Chem. Soc. Rev. 49, 2617–2687 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jones, M. R. et al. Modulation of the Aβ peptide aggregation pathway by KP1019 limits Aβ-associated neurotoxicity. Metallomics 7, 129–135 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eden, A. et al. Covalent fragment inhibits intramembrane proteolysis. Front. Mol. Biosci. 9, 958399 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, R. et al. Recognition of the amyloid precursor protein by human γ-secretase. Science 363, eaaw0930 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schaefer, D. & Cheng, X. Recent Advances in Covalent Drug Discovery. Pharmaceuticals 16, 663 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCormick, F. Sticking it to KRAS: Covalent Inhibitors Enter the Clinic. Cancer Cell 37, 3–4 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baillie, T. A. Targeted Covalent Inhibitors for Drug Design. Angew. Chem. Int. Ed. Engl. 55, 13408–13421 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bhatia, S., Singh, M., Singh, T. & Singh, V. Scrutinizing the Therapeutic Potential of PROTACs in the Management of Alzheimer’s Disease. Neurochem. Res. 48, 13–25 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fang, Y. et al. Progress and Challenges in Targeted Protein Degradation for Neurodegenerative Disease Therapy. J. Med. Chem. 65, 11454–11477 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qu, L. et al. Discovery of PT-65 as a highly potent and selective Proteolysis-targeting chimera degrader of GSK3 for treating Alzheimer’s disease. Eur. J. Med. Chem. 226, 113889 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sibley, C. D. & Schneekloth, J. S. Heterobifunctional molecules tackle targeted protein dephosphorylation. Trends Pharm. Sci. 43, 263–265 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, Z. et al. Targeted Dephosphorylation of Tau by Phosphorylation Targeting Chimeras (PhosTACs) as a Therapeutic Modality. J. Am. Chem. Soc. 145, 4045–4055 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wu, D. et al. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm. Sin. B 13, 4060–4088 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kumar, V. & Roy, K. Protein-protein interaction network analysis for the identification of novel multi-target inhibitors and target miRNAs against Alzheimer’s disease. Adv. Protein Chem. Struct. Biol. 139, 405–467 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Chen, H. et al. Network integration and protein structural binding analysis of neurodegeneration-related interactome. Brief. Bioinform. 24, bbad237 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Ganeshpurkar, A. et al. Protein-Protein Interactions and Aggregation Inhibitors in Alzheimer’s Disease. Curr. Top. Med. Chem. 19, 501–533 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Santini, B. L. & Zacharias, M. Rapid in silico Design of Potential Cyclic Peptide Binders Targeting Protein-Protein Interfaces. Front. Chem. 8, 573259 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, A. C., Harris, J. L., Khanna, K. K. & Hong, J. H. A Comprehensive Review on Current Advances in Peptide Drug Development and Design. Int. J. Mol. Sci. 20, 2383 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, P. et al. LILRB2-mediated TREM2 signaling inhibition suppresses microglia functions. Mol. Neurodegener. 17, 44 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, Q. et al. Inhibiting amyloid-β cytotoxicity through its interaction with the cell surface receptor LilrB2 by structure-based design. Nat. Chem. 10, 1213–1221 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lao, K. et al. Identification of novel Aβ-LilrB2 inhibitors as potential therapeutic agents for Alzheimer’s disease. Mol. Cell Neurosci. 114, 103630 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ciccone, L. et al. The Positive Side of the Alzheimer’s Disease Amyloid Cross-Interactions: The Case of the Aβ 1-42 Peptide with Tau, TTR, CysC, and ApoA1. Molecules 25, 2439 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cotrina, E. Y. et al. Targeting transthyretin in Alzheimer’s disease: Drug discovery of small-molecule chaperones as disease-modifying drug candidates for Alzheimer’s disease. Eur. J. Med. Chem. 226, 113847 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, Y. et al. Direct inhibition of Keap1-Nrf2 Protein-Protein interaction as a potential therapeutic strategy for Alzheimer’s disease. Bioorg. Chem. 103, 104172 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, Y. et al. A potent phosphodiester Keap1-Nrf2 protein-protein interaction inhibitor as the efficient treatment of Alzheimer’s disease. Redox Biol. 64, 102793 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Georgakopoulos, N. et al. Phenyl Bis-Sulfonamide Keap1-Nrf2 Protein-Protein Interaction Inhibitors with an Alternative Binding Mode. J. Med. Chem. 65, 7380–7398 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Modell, A. E., Blosser, S. L. & Arora, P. S. Systematic Targeting of Protein-Protein Interactions. Trends Pharm. Sci. 37, 702–713 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jungbauer, G. et al. Periodontal microorganisms and Alzheimer disease–A causative relationship? Periodontol. 2000 89, 59–82 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryder, M. I. & Xenoudi, P. Alzheimer disease and the periodontal patient: New insights, connections, and therapies. Periodontol. 2000 87, 32–42 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Ganz, T., Fainstein, N. & Ben-Hur, T. When the infectious environment meets the AD brain. Mol. Neurodegener. 17, 53 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Komaroff, A. L. Can Infections Cause Alzheimer Disease? JAMA 324, 239–240 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Marcocci, M. E. et al. Herpes Simplex Virus-1 in the Brain: The Dark Side of a Sneaky Infection. Trends Microbiol. 28, 808–820 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. MAMDC2, a gene highly expressed in microglia in experimental models of Alzheimers Disease, positively regulates the innate antiviral response during neurotropic virus infection. J. Infect. 84, 187–204 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Albaret, M. A. et al. HSV-1 cellular model reveals links between aggresome formation and early step of Alzheimer’s disease. Transl. Psychiatry 13, 86 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, M. et al. Microbial infection promotes amyloid pathology in a mouse model of Alzheimer’s disease via modulating γ-secretase. Mol. Psychiatry 29, 1491–1500 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Golzari-Sorkheh, M., Weaver, D. F. & Reed, M. A. COVID-19 as a Risk Factor for Alzheimer’s Disease. J. Alzheimers Dis. 91, 1–23 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, L. et al. Association of COVID-19 with New-Onset Alzheimer’s Disease. J. Alzheimers Dis. 89, 411–414 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Q., Davis, P. B., Gurney, M. E. & Xu, R. COVID-19 and dementia: Analyses of risk, disparity, and outcomes from electronic health records in the US. Alzheimers Dement. 17, 1297–1306 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H. et al. APOE interacts with ACE2 inhibiting SARS-CoV-2 cellular entry and inflammation in COVID-19 patients. Signal Transduct. Target Ther. 7, 261 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magusali, N. et al. A genetic link between risk for Alzheimer’s disease and severe COVID-19 outcomes via the OAS1 gene. Brain 144, 3727–3741 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, G. et al. SARS-CoV-2 Spike protein S2 subunit modulates γ-secretase and enhances amyloid-β production in COVID-19 neuropathy. Cell Discov. 8, 99 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Highly efficient intercellular spreading of protein misfolding mediated by viral ligand-receptor interactions. Nat. Commun. 12, 5739 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mansour, H. M. The interference between SARS-COV-2 and Alzheimer’s disease: Potential immunological and neurobiological crosstalk from a kinase perspective reveals a delayed pandemic. Ageing Res. Rev. 94, 102195 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Identification of novel diagnostic panel for mild cognitive impairment and Alzheimer’s disease: findings based on urine proteomics and machine learning. Alzheimers Res. Ther. 15, 191 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ashton, N. J., Ide, M., Zetterberg, H. & Blennow, K. Salivary biomarkers for Alzheimer’s disease and related disorders. Neurol. Ther. 8, 83–94 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alber, J. et al. Developing retinal biomarkers for the earliest stages of Alzheimer’s disease: What we know, what we don’t, and how to move forward. Alzheimers Dement. 16, 229–243 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Pun, F. W., Ozerov, I. V. & Zhavoronkov, A. AI-powered therapeutic target discovery. Trends Pharm. Sci. 44, 561–572 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cheng, F. et al. Artificial intelligence and open science in discovery of disease-modifying medicines for Alzheimer’s disease. Cell Rep. Med. 5, 101379 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, J. et al. Interpretable deep learning translation of GWAS and multi-omics findings to identify pathobiology and drug repurposing in Alzheimer’s disease. Cell Rep. 41, 111717 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geng, C., Wang, Z. & Tang, Y. Machine learning in Alzheimer’s disease drug discovery and target identification. Ageing Res. Rev. 93, 102172 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Winchester, L. M. et al. Artificial intelligence for biomarker discovery in Alzheimer’s disease and dementia. Alzheimers Dement. 19, 5860–5871 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Qiu, S. et al. Multimodal deep learning for Alzheimer’s disease dementia assessment. Nat. Commun. 13, 3404 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Francis, P. T., Palmer, A. M., Snape, M. & Wilcock, G. K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry 66, 137–147 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whitehouse, P. J. et al. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann. Neurol. 10, 122–126 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lawlor, B. A. & Davis, K. L. Does modulation of glutamatergic function represent a viable therapeutic strategy in Alzheimer’s disease? Biol. Psychiatry 31, 337–350 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hardy, J. & Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharm. Sci. 12, 383–388 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Regland, B. & Gottfries, C. G. The role of amyloid beta-protein in Alzheimer’s disease. Lancet 340, 467–469 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goedert, M. Tau protein and the neurofibrillary pathology of Alzheimer’s disease. Trends Neurosci. 16, 460–465 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mandelkow, E. M. & Mandelkow, E. Tau in Alzheimer’s disease. Trends Cell Biol. 8, 425–427 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aisen, P. S. & Davis, K. L. Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am. J. Psychiatry 151, 1105–1113 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heppner, F. L., Ransohoff, R. M. & Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci. 16, 358–372 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, C. et al. Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut 71, 2233–2252 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Chandra, S., Sisodia, S. S. & Vassar, R. J. The gut microbiome in Alzheimer’s disease: what we know and what remains to be explored. Mol. Neurodegener. 18, 9 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bush, A. I. et al. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265, 1464–1467 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zatta, P., Drago, D., Bolognin, S. & Sensi, S. L. Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharm. Sci. 30, 346–355, (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tzioras, M., McGeachan, R. I., Durrant, C. S. & Spires-Jones, T. L. Synaptic degeneration in Alzheimer disease. Nat. Rev. Neurol. 19, 19–38 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. Amyloid β-based therapy for Alzheimer’s disease: challenges, successes and future. Signal Transduct. Target Ther. 8, 248 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaur, D., Sharma, V. & Deshmukh, R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology 27, 663–677 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Stanca, S., Rossetti, M. & Bongioanni, P. Astrocytes as Neuroimmunocytes in Alzheimer’s Disease: A Biochemical Tool in the Neuron-Glia Crosstalk along the Pathogenetic Pathways. Int J. Mol. Sci. 24, 13880 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arranz, A. M. & De Strooper, B. The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol. 18, 406–414 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sarkar, S. & Biswas, S. C. Astrocyte subtype-specific approach to Alzheimer’s disease treatment. Neurochem Int. 145, 104956 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Colonna, M. The biology of TREM receptors. Nat. Rev. Immunol. 23, 580–594 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qin, Q. et al. TREM2, microglia, and Alzheimer’s disease. Mech. Ageing Dev. 195, 111438 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ulland, T. K. & Colonna, M. TREM2 – a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, W. M. et al. Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J. Exp. Med. 215, 745–760 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lessard, C. B. et al. High-affinity interactions and signal transduction between Aβ oligomers and TREM2. EMBO Mol. Med. 10, e9027 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, S. et al. TREM2 drives microglia response to amyloid-β via SYK-dependent and -independent pathways. Cell 185, 4153–4169.e4119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Custodia, A. et al. Endothelial Progenitor Cells and Vascular Alterations in Alzheimer’s Disease. Front Aging Neurosci. 13, 811210 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar