close
close

Ammonia-induced lysosomal and mitochondrial damage causes cell death of effector CD8+ T cells

  • Kandasamy, P., Gyimesi, G., Kanai, Y. & Hediger, M. A. Amino acid transporters revisited: new views in health and disease. Trends Biochem. Sci. 43, 752–789 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johmura, Y. et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 371, 265–270 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adeva, M. M., Souto, G., Blanco, N. & Donapetry, C. Ammonium metabolism in humans. Metabolism 61, 1495–1511 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barmore, W., Azad, F. & Stone, W. L. Physiology, urea cycle. in StatPearls (StatPearls Publishing, 2023).

  • Wijdicks, E. F. M. Hepatic encephalopathy. N. Engl. J. Med. 375, 1660–1670 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aldridge, D. R., Tranah, E. J. & Shawcross, D. L. Pathogenesis of hepatic encephalopathy: role of ammonia and systemic inflammation. J. Clin. Exp. Hepatol. 5, S7–S20 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Sepehrinezhad, A., Zarifkar, A., Namvar, G., Shahbazi, A. & Williams, R. Astrocyte swelling in hepatic encephalopathy: molecular perspective of cytotoxic edema. Metab. Brain Dis. 35, 559–578 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paulusma, C. C., Lamers, W. H., Broer, S. & van de Graaf, S. F. J. Amino acid metabolism, transport and signalling in the liver revisited. Biochem. Pharmacol. 201, 115074 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haussinger, D. Nitrogen metabolism in liver: structural and functional organization and physiological relevance. Biochem. J. 267, 281–290 (1990).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kroupina, K., Bemeur, C. & Rose, C. F. Amino acids, ammonia, and hepatic encephalopathy. Anal. Biochem. 649, 114696 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Skaper, S. D., O’Brien, W. E. & Schafer, I. A. The influence of ammonia on purine and pyrimidine nucleotide biosynthesis in rat liver and brain in vitro. Biochem. J. 172, 457–464 (1978).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van Kuilenburg, A. B., van Maldegem, B. T., Abeling, N. G., Wijburg, F. A. & Duran, M. Analysis of pyrimidine synthesis de novo intermediates in urine during crisis of a patient with ornithine transcarbamylase deficiency. Nucleosides Nucleotides Nucleic Acids 25, 1251–1255 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Rabinovich, S. et al. Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis. Nature 527, 379–383 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, L. et al. p53 regulation of ammonia metabolism through urea cycle controls polyamine biosynthesis. Nature 567, 253–256 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marino, G. & Kroemer, G. Ammonia: a diffusible factor released by proliferating cells that induces autophagy. Sci. Signal. 3, 19 (2010).

    Article 

    Google Scholar 

  • Spinelli, J. B. et al. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass. Science 358, 941–946 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, M. A. & Bevan, M. J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25, 171–192 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blattman, J. N. et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195, 657–664 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farber, D. L., Yudanin, N. A. & Restifo, N. P. Human memory T cells: generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14, 24–35 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Carr, E. L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tang, K. et al. Ammonia detoxification promotes CD8+ T cell memory development by urea and citrulline cycles. Nat. Immunol. 24, 162–173 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, B. et al. Phase 2 comparison of a novel ammonia scavenging agent with sodium phenylbutyrate in patients with urea cycle disorders: safety, pharmacokinetics and ammonia control. Mol. Genet. Metab. 100, 221–228 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rockey, D. C. et al. Randomized, double-blind, controlled study of glycerol phenylbutyrate in hepatic encephalopathy. Hepatology 59, 1073–1083 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Marrack, P. & Kappler, J. Control of T cell viability. Annu. Rev. Immunol. 22, 765–787 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schluns, K. S. & Lefrancois, L. Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 3, 269–279 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McComb, S., Mulligan, R. & Sad, S. Caspase-3 is transiently activated without cell death during early antigen driven expansion of CD8+ T cells in vivo. PLoS ONE 5, e15328 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nussbaum, A. K. & Whitton, J. L. The contraction phase of virus-specific CD8+ T cells is unaffected by a pan-caspase inhibitor. J. Immunol. 173, 6611–6618 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Denton, D. & Kumar, S. Autophagy-dependent cell death. Cell Death Differ. 26, 605–616 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bortolato, M., Chen, K. & Shih, J. C. Monoamine oxidase inactivation: from pathophysiology to therapeutics. Adv. Drug Deliv. Rev. 60, 1527–2533 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhawna et al. Monoamine oxidase inhibitors: a concise review with special emphasis on structure activity relationship studies. Eur. J. Med. Chem. 242, 114655 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, C. Y., Ma, J. X. & Waite, T. D. The impact of absorbents on ammonia recovery in a capacitive membrane stripping system. Chem. Eng. J. 382, 122851 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wall, S. M. Ammonium transport and the role of the Na, K-ATPase. Miner. Electrolyte Metab. 22, 311–317 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Ohkuma, S. & Poole, B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl Acad. Sci. USA 75, 3327–3331 (1978).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schrezenmeier, E. & Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol. 16, 155–166 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Antonenko, Y. N., Pohl, P. & Denisov, G. A. Permeation of ammonia across bilayer lipid membranes studied by ammonium ion selective microelectrodes. Biophys. J. 72, 2187–2195 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bakouh, N. et al. NH3 is involved in the NH4+ transport induced by the functional expression of the human Rh C glycoprotein. J. Biol. Chem. 279, 15975–15983 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mak, D. O., Dang, B., Weiner, I. D., Foskett, J. K. & Westhoff, C. M. Characterization of ammonia transport by the kidney Rh glycoproteins RhBG and RhCG. Am. J. Physiol. Renal Physiol. 290, F297–F305 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geyer, R. R., Parker, M. D., Toye, A. M., Boron, W. F. & Musa-Aziz, R. Relative CO2/NH3 permeabilities of human RhAG, RhBG and RhCG. J. Membr. Biol. 246, 915–926 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marini, A. M. et al. The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat. Genet. 26, 341–344 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ashrafi, G. & Schwarz, T. L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31–42 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McWilliams, T. G. & Muqit, M. M. PINK1 and Parkin: emerging themes in mitochondrial homeostasis. Curr. Opin. Cell Biol. 45, 83–91 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500–19505 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chu, C. T. et al. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15, 1197–1205 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aman, Y. et al. Autophagy in healthy aging and disease. Nat. Aging 1, 634–650 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yim, W. W. Y. & Mizushima, N. Lysosome biology in autophagy. Cell Discov. 6, 6 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vest, R. T. et al. Small molecule C381 targets the lysosome to reduce inflammation and ameliorate disease in models of neurodegeneration. Proc. Natl Acad. Sci. USA 119, e2121609119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ratto, E. et al. Direct control of lysosomal catabolic activity by mTORC1 through regulation of v-ATPase assembly. Nat. Commun. 13, 4848 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, H. N. et al. Microenvironmental ammonia enhances T cell exhaustion in colorectal cancer. Cell Metab. 35, 134–149 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weisshaar, N. et al. The malate shuttle detoxifies ammonia in exhausted T cells by producing 2-ketoglutarate. Nat. Immunol. 24, 1921–1932 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan, J. D. et al. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat. Rev. Immunol. 21, 769–784 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yee, C. Adoptive T cell therapy: points to consider. Curr. Opin. Immunol. 51, 197–203 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Murphy, M. P. et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 4, 651–662 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sies, H. et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat. Rev. Mol. Cell Biol. 23, 499–515 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Forman, H. J. & Zhang, H. Q. Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 689–709 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Evavold, C. L. et al. Control of gasdermin D oligomerization and pyroptosis by the Ragulator–Rag–mTORC1 pathway. Cell 184, 4495–4511 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, J. J., Gao, W. Q. & Shao, F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem. Sci. 42, 245–254 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H. et al. Sustained AhR activity programs memory fate of early effector CD8+ T cells. Proc. Natl Acad. Sci. USA 121, e1977309175 (2024).

    Google Scholar 

  • Pechincha, C. et al. Lysosomal enzyme trafficking factor LYSET enables nutritional usage of extracellular proteins. Science 378, eabn5637 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, H. F. et al. Ketogenesis-generated β-hydroxybutyrate is an epigenetic regulator of CD8+ T-cell memory development. Nat. Cell Biol. 22, 18–25 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spinelli, J. B., Kelley, L. P. & Haigis, M. C. An LC-MS approach to quantitative measurement of ammonia isotopologues. Sci. Rep. 7, 10304 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar